Open wchang-apixio opened 1 year ago
Thanks for reporting. Seems like a serious bug, needs to investigate.
@wchang-apixio Did you ever find a solution to this?
Not really. The best I've done is use .enumerate()
to add an index and then filter on it.
🐛 Describe the bug
Using
header()
on anIterDataPipe
causesDataLoader
withMPRS
to hang on the second time thru.I'd expect:
But it hangs after just the first line appears.
Versions
Collecting environment information... PyTorch version: 2.0.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.4 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.31
Python version: 3.8.10 | packaged by conda-forge | (default, May 11 2021, 07:01:05) [GCC 9.3.0] (64-bit runtime) Python platform: Linux-5.4.196-108.356.amzn2.x86_64-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: 11.2.152 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB Nvidia driver version: 470.57.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz Stepping: 1 CPU MHz: 2701.336 CPU max MHz: 3000.0000 CPU min MHz: 1200.0000 BogoMIPS: 4600.03 Hypervisor vendor: Xen Virtualization type: full L1d cache: 512 KiB L1i cache: 512 KiB L2 cache: 4 MiB L3 cache: 45 MiB NUMA node0 CPU(s): 0-31 Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx xsaveopt
Versions of relevant libraries: [pip3] mypy-boto3-s3==1.26.0.post1 [pip3] numpy==1.24.3 [pip3] pytorch-lightning==2.0.2 [pip3] torch==2.0.0 [pip3] torchdata==0.6.0 [pip3] torchmetrics==0.11.4 [pip3] triton==2.0.0 [conda] numpy 1.23.5 pypi_0 pypi [conda] torchdata 0.6.0 pypi_0 pypi