pytorch / pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
https://pytorch.org
Other
83.94k stars 22.62k forks source link

DISABLED test_comprehensive_nn_functional_mse_loss_cuda_float32 (__main__.TestInductorOpInfoCUDA) #140665

Open pytorch-bot[bot] opened 13 hours ago

pytorch-bot[bot] commented 13 hours ago

Platforms: linux

This test was disabled because it is failing in CI. See recent examples and the most recent trunk workflow logs.

Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes.

Debugging instructions (after clicking on the recent samples link): DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets:

  1. Click on the workflow logs linked above
  2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work.
  3. Grep for test_comprehensive_nn_functional_mse_loss_cuda_float32
  4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs.
Sample error message ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1152, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2199, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1229, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1229, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1229, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1592, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1528, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 955, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 947, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1193, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1153, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 613, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 454, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 556, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1445, in __call__ return self._torchdynamo_orig_callable( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 550, in __call__ return _compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 977, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 708, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 743, in _compile_inner out_code = transform_code_object(code, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 234, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 662, in transform tracer.run() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2900, in run super().run() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3091, in RETURN_VALUE self._return(inst) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3076, in _return self.output.compile_subgraph( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1077, in compile_subgraph self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1349, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1398, in call_user_compiler return self._call_user_compiler(gm) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1447, in _call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1428, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__ compiled_gm = compiler_fn(gm, example_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__ compiled_gm = compiler_fn(gm, example_inputs) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 446, in compile_fx_wrapper return compile_fx(model_, example_inputs_) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1708, in compile_fx return aot_autograd( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 72, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1103, in aot_module_simplified compiled_fn = dispatch_and_compile() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1079, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 527, in create_aot_dispatcher_function return _create_aot_dispatcher_function( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 778, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 655, in aot_dispatch_autograd compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1525, in fw_compiler_base return _fw_compiler_base(model, example_inputs, is_inference) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1594, in _fw_compiler_base return inner_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 587, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 102, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 744, in _compile_fx_inner compiled_graph = FxGraphCache.load( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1514, in load compiled_graph = compile_fx_fn( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 651, in codegen_and_compile compiled_graph = fx_codegen_and_compile(gm, example_inputs, **fx_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 962, in fx_codegen_and_compile compiled_fn = graph.compile_to_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2038, in compile_to_fn return self.compile_to_module().call File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1955, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1989, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3057, in load_by_key_path mod = _reload_python_module(key, path) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 45, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmp0dy4o07i/co/ccos6zxcrwoxpruyapaqzwcduwnmkqafedmf7t2vhhisbbfwywyk.py", line 84, in async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 319, in wait scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3537, in result self.kernel.precompile() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 287, in precompile compiled_binary, launcher = self._precompile_config( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 505, in _precompile_config binary = triton.compile(*compile_args, **compile_kwargs) File "/var/lib/jenkins/triton/python/triton/compiler/compiler.py", line 276, in compile module = src.make_ir(options, codegen_fns, context) File "/var/lib/jenkins/triton/python/triton/compiler/compiler.py", line 113, in make_ir return ast_to_ttir(self.fn, self, context=context, options=options, codegen_fns=codegen_fns) File "/opt/conda/envs/py_3.10/lib/python3.10/inspect.py", line 1121, in getsourcelines lines, lnum = findsource(object) File "/opt/conda/envs/py_3.10/lib/python3.10/inspect.py", line 958, in findsource raise OSError('could not get source code') torch._dynamo.exc.BackendCompilerFailed: backend='compile_fx_wrapper' raised: OSError: could not get source code Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3057, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3057, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 460, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1592, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1164, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(), device="cuda:0", dtype=torch.float32], args=TensorList[Tensor[size=(), device="cuda:0", dtype=torch.float32]], kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_nn_functional_mse_loss_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ```

Test file path: inductor/test_torchinductor_opinfo.py

cc @clee2000 @ezyang @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov

pytorch-bot[bot] commented 13 hours ago
Hello there! From the DISABLED prefix in this issue title, it looks like you are attempting to disable a test in PyTorch CI. The information I have parsed is below: * Test name: `test_comprehensive_nn_functional_mse_loss_cuda_float32 (__main__.TestInductorOpInfoCUDA)` * Platforms for which to skip the test: linux * Disabled by `pytorch-bot[bot]` Within ~15 minutes, `test_comprehensive_nn_functional_mse_loss_cuda_float32 (__main__.TestInductorOpInfoCUDA)` will be disabled in PyTorch CI for these platforms: linux. Please verify that your test name looks correct, e.g., `test_cuda_assert_async (__main__.TestCuda)`. To modify the platforms list, please include a line in the issue body, like below. The default action will disable the test for all platforms if no platforms list is specified. ``` Platforms: case-insensitive, list, of, platforms ``` We currently support the following platforms: asan, dynamo, inductor, linux, mac, macos, rocm, slow, win, windows. ### How to re-enable a test To re-enable the test globally, close the issue. To re-enable a test for only a subset of platforms, remove the platforms from the list in the issue body. This may take some time to propagate. To re-enable a test only for a PR, put `Fixes #140665` in the PR body and rerun the test jobs. Note that if a test is flaky, it maybe be difficult to tell if the test is still flaky on the PR.