pytorch / torchcodec

PyTorch video decoding
BSD 3-Clause "New" or "Revised" License
88 stars 10 forks source link

Difference in CPU and CUDA Decode Output Values May Be Reduced with CSC Function #412

Open pjs102793 opened 4 days ago

pjs102793 commented 4 days ago

🐛 Describe the bug

@fmassa

First of all, I want to express my gratitude to the team for creating and maintaining this amazing open-source project. It’s a fantastic tool, and I deeply appreciate all the effort that has gone into its development.

The solution to this issue was inspired by this discussion.

Currently, the Tensor value difference between CPU and CUDA decoding seems to be quite significant. If a model used for training or inference is sensitive to color, this discrepancy could cause potential issues. This behavior was unexpected, as the TorchAudio decode pipeline I tested did not exhibit such large differences, even when decoding with CUDA.

Below is the test code I used:

import torch
from torchcodec.decoders import VideoDecoder

decoder_cpu = VideoDecoder("tmp.mp4", device="cpu")
value_cpu = decoder_cpu[0].float() / 255

decoder_cuda = VideoDecoder("tmp.mp4", device="cuda")
value_cuda = decoder_cuda[0].float() / 255

if isinstance(value_cuda, torch.Tensor):
    value_cuda = value_cuda.cpu()

if isinstance(value_cpu, torch.Tensor) and isinstance(value_cuda, torch.Tensor):
    difference = torch.abs(value_cpu - value_cuda)
    print("Difference:", difference)
    print("Max difference:", torch.max(difference).item())
    print("Mean difference:", torch.mean(difference).item())
else:
    print("Values are equal:", value_cpu == value_cuda)

Output

# Output
$ Max difference: 0.1490195393562317
$ Mean difference: 0.048768386244773865

I replaced the NPP function nppiNV12ToRGB_709HDTV_8u_P2C3R with nppiNV12ToRGB_709CSC_8u_P2C3R in convertAVFrameToDecodedOutputOnCuda located in src/torchcodec/decoders/_core/CudaDevice.cpp., I got the following results:

# Output
$ Max difference: 0.007843196392059326
$ Mean difference: 0.0015894902171567082

After simply replacing the function, all pytest cases passed successfully. This demonstrates that using the CSC function allows CUDA to produce more accurate colors.

Versions

PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.24.0 Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.10.223-211.872.amzn2.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L4 Nvidia driver version: 535.183.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True

CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Vendor ID: AuthenticAMD Model name: AMD EPYC 7R13 Processor CPU family: 25 Model: 1 Thread(s) per core: 2 Core(s) per socket: 2 Socket(s): 1 Stepping: 1 BogoMIPS: 5299.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid Hypervisor vendor: KVM Virtualization type: full L1d cache: 64 KiB (2 instances) L1i cache: 64 KiB (2 instances) L2 cache: 1 MiB (2 instances) L3 cache: 8 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-3 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected

Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchcodec==0.0.4a0 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] Could not collect

NicolasHug commented 3 days ago

Thank you so much for chasing this up @pjs102793 !

I opened https://github.com/pytorch/torchcodec/pull/413 to see how low we can lower the tolerance in our tests when using. Let me run more experiments later today.