Closed anijain2305 closed 2 years ago
Repro
import torch from torch import tensor, device import torch.fx as fx from torchdynamo.testing import rand_strided from math import inf from torch.fx.experimental.proxy_tensor import make_fx # torch version: 1.14.0a0+git65b4080 # torch cuda version: 11.6 # torch git version: 65b408074f4ecc99faf5720ea5b3570a483ec9f4 # CUDA Info: # nvcc: NVIDIA (R) Cuda compiler driver # Copyright (c) 2005-2022 NVIDIA Corporation # Built on Thu_Feb_10_18:23:41_PST_2022 # Cuda compilation tools, release 11.6, V11.6.112 # Build cuda_11.6.r11.6/compiler.30978841_0 # GPU Hardware Info: # NVIDIA A100-SXM4-40GB : 8 from torch.nn import * class Repro(torch.nn.Module): def __init__(self): super().__init__() def forward(self, add_283, lift_fresh_copy_180): maximum_90 = torch.ops.aten.maximum.default(add_283, lift_fresh_copy_180) return (maximum_90, ) x = torch.tensor([-1.0, 0, 1.0, -2.0], device="cuda") x = torch.sqrt(x) add = torch.randn(4, device="cuda") args = [x, add] mod = make_fx(Repro().to(device="cuda"))(*args) from torchinductor.compile_fx import compile_fx_inner from torchdynamo.debug_utils import same_two_models compiled = compile_fx_inner(mod, args) ref = mod(*args) res = compiled(*args) assert same_two_models(mod, compiled, args, only_fwd=True), "Accuracy failed"
cc @desertfire @SherlockNoMad
Helps with fbnet and mobilenetv3_100
Duplicate of pytorch/pytorch#93784
Repro
cc @desertfire @SherlockNoMad
Helps with fbnet and mobilenetv3_100