Closed aidan-jackson-data closed 1 year ago
Given the nature of the error, and the virtual environment shown above, I believe the Issue is caused by the transformers
package installing pytorch 1.12.1
. The version installed from the instructions here results in the above package pytorch-triton 2.0.0+0d7e753227
being installed into the environment.
Is there any insight as to how the transformers
package was installed in this example? Or how these conflicting versions should be resolved?
Easiest way is to install transformers and then pytorch nightlies. If that doesn't work for you, you can install pytorch nightlies first if you pip install transfomers --no-deps
Easiest way is to install transformers and then pytorch nightlies. If that doesn't work for you, you can install pytorch nightlies first if you
pip install transfomers --no-deps
Thank you for the advice. After starting fresh and installing transformers
without dependencies, and running the install commands a few times in row, it became functional.
Closing with this comment.
🐛 Describe the bug
The second to last code example shown here is a demonstration of using a Hugging Face model with PyTorch 2.0's compile feature.
When copying the example, having followed the PyTorch 2.0 installation instructions in a new virtual environment, an error is encountered. When removing the model compilation line, no error is encountered.
Error logs
AttributeError Traceback (most recent call last) File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:1052, in run_node(output_graph, node, args, kwargs, nnmodule) 1051 if op == "call_function": -> 1052 return node.target(*args, **kwargs) 1053 elif op == "call_method":
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_tensor.py:40, in _handle_torch_function_and_wrap_type_error_to_not_implemented..wrapped(*args, kwargs)
39 return handle_torch_function(wrapped, args, *args, *kwargs)
---> 40 return f(args, kwargs)
41 except TypeError:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_tensor.py:840, in Tensor.rsub(self, other) 838 @_handle_torch_function_and_wrap_type_error_to_not_implemented 839 def rsub(self, other): --> 840 return _C._VariableFunctions.rsub(self, other)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py:886, in FakeTensorMode.__torch_dispatch__(self, func, types, args, kwargs) 885 with self: --> 886 return decomposition_table[func](*args, **kwargs) 888 with self: 889 # Decomposes CompositeImplicitAutograd ops
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_decomp/decompositions.py:1033, in rsub_Scalar(self, other, alpha) 1031 @register_decomposition(aten.rsub.Scalar) 1032 def rsub_Scalar(self: Tensor, other: float, alpha: float = 1) -> Tensor: -> 1033 return torch.sub(other, self, alpha=alpha)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py:916, in FakeTensorMode.__torch_dispatch__(self, func, types, args, kwargs) 915 with in_kernel_invocation_manager(self): --> 916 r = func(*args, **kwargs) 917 except NotImplementedError as not_implemented_error: 918 # no meta kernel registered, fallback to kernel for the device
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_ops.py:284, in OpOverload.call(self, *args, kwargs) 283 def call(self, *args, *kwargs): --> 284 return self._op(args, kwargs or {})
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_prims_common/wrappers.py:209, in out_wrapper.._out_wrapper.._fn(out, *args, *kwargs)
207 kwargs[k] = out_attr
--> 209 result = fn(args, **kwargs)
210 assert (
211 isinstance(result, TensorLike)
212 and is_tensor
213 or isinstance(result, Tuple) # type: ignore[arg-type]
214 and len(result) == len(out_names)
215 )
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_prims_common/wrappers.py:119, in elementwise_type_promotion_wrapper.call.._fn(*args, kwargs)
117 bound.arguments.update(promoted_args)
--> 119 result = fn(bound.arguments)
121 if isinstance(result, TensorLike):
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_refs/init.py:1587, in sub(a, b, alpha) 1585 b = prims.mul(b, alpha) -> 1587 return prims.sub(a, b)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_ops.py:284, in OpOverload.call(self, *args, kwargs) 283 def call(self, *args, *kwargs): --> 284 return self._op(args, kwargs or {})
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_prims/init.py:349, in _elementwise_meta(type_promotion, args_with_fixed_dtypes, args) 348 strides = utils.compute_elementwise_output_strides(args_) --> 349 shape = utils.extractshape(*args, allow_cpu_scalar_tensors=True) 351 # Acquires the dtype
AttributeError: module 'torch._prims.utils' has no attribute 'extract_shape'
The above exception was the direct cause of the following exception:
RuntimeError Traceback (most recent call last) File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:1011, in get_fake_value(node, tx) 1010 with tx.fake_mode, enable_python_dispatcher(): -> 1011 return wrap_fake_exception( 1012 lambda: run_node(tx.output, node, args, kwargs, nnmodule) 1013 ) 1014 except Unsupported:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:702, in wrap_fake_exception(fn) 701 try: --> 702 return fn() 703 except UnsupportedFakeTensorException as e:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:1012, in get_fake_value..()
1010 with tx.fake_mode, enable_python_dispatcher():
1011 return wrap_fake_exception(
-> 1012 lambda: run_node(tx.output, node, args, kwargs, nnmodule)
1013 )
1014 except Unsupported:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:1061, in run_node(output_graph, node, args, kwargs, nnmodule) 1060 except Exception as e: -> 1061 raise RuntimeError( 1062 f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n{e}\n(scroll up for backtrace)" 1063 ) from e 1064 raise AssertionError(op)
RuntimeError: Failed running call_function(*(1.0, FakeTensor(FakeTensor(..., device='meta', size=(1, 1, 1, 12)), cuda:0)), **{}):
module 'torch._prims.utils' has no attribute 'extract_shape'
(scroll up for backtrace)
The above exception was the direct cause of the following exception:
TorchRuntimeError Traceback (most recent call last) Cell In[3], line 4 2 text = "Replace me by any text you'd like." 3 encoded_input = tokenizer(text, return_tensors='pt').to(device="cuda:0") ----> 4 output = model(**encoded_input)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/nn/modules/module.py:1482, in Module._call_impl(self, *args, *kwargs) 1477 # If we don't have any hooks, we want to skip the rest of the logic in 1478 # this function, and just call forward. 1479 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1480 or _global_backward_pre_hooks or _global_backward_hooks 1481 or _global_forward_hooks or _global_forward_pre_hooks): -> 1482 return forward_call(args, **kwargs) 1483 # Do not call functions when jit is used 1484 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py:83, in OptimizedModule.forward(self, *args, kwargs) 82 def forward(self, *args, *kwargs): ---> 83 return self.dynamo_ctx(self._orig_mod.forward)(args, kwargs)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py:212, in _TorchDynamoContext.call.._fn(*args, *kwargs)
210 dynamic_ctx.enter()
211 try:
--> 212 return fn(args, **kwargs)
213 finally:
214 set_eval_frame(prior)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py:333, in catch_errors_wrapper..catch_errors(frame, cache_size)
330 return hijacked_callback(frame, cache_size, hooks)
332 with compile_lock:
--> 333 return callback(frame, cache_size, hooks)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py:480, in convert_frame.._convert_frame(frame, cache_size, hooks)
478 counters["frames"]["total"] += 1
479 try:
--> 480 result = inner_convert(frame, cache_size, hooks)
481 counters["frames"]["ok"] += 1
482 return result
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py:103, in wrap_convert_context.._fn(*args, *kwargs)
101 torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
102 try:
--> 103 return fn(args, **kwargs)
104 finally:
105 torch._C._set_grad_enabled(prior_grad_mode)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:88, in dynamo_timed..time_wrapper(*args, *kwargs)
86 compilation_metrics[key] = []
87 t0 = time.time()
---> 88 r = func(args, **kwargs)
89 latency = time.time() - t0
90 # print(f"Dynamo timer: key={key}, latency={latency:.2f} sec")
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py:339, in convert_frame_assert.._convert_frame_assert(frame, cache_size, hooks)
336 global initial_grad_state
337 initial_grad_state = torch.is_grad_enabled()
--> 339 return _compile(
340 frame.f_code,
341 frame.f_globals,
342 frame.f_locals,
343 frame.f_builtins,
344 compiler_fn,
345 one_graph,
346 export,
347 hooks,
348 frame,
349 )
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py:400, in _compile(code, globals, locals, builtins, compiler_fn, one_graph, export, hooks, frame) 398 for attempt in itertools.count(): 399 try: --> 400 out_code = transform_code_object(code, transform) 401 orig_code_map[out_code] = code 402 break
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/bytecode_transformation.py:341, in transform_code_object(code, transformations, safe) 338 instructions = cleaned_instructions(code, safe) 339 propagate_line_nums(instructions) --> 341 transformations(instructions, code_options) 343 fix_vars(instructions, code_options) 345 dirty = True
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py:387, in _compile..transform(instructions, code_options)
374 nonlocal output
375 tracer = InstructionTranslator(
376 instructions,
377 code,
(...)
385 mutated_closure_cell_contents,
386 )
--> 387 tracer.run()
388 output = tracer.output
389 assert output is not None
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:1684, in InstructionTranslator.run(self) 1682 def run(self): 1683 _step_logger()(logging.INFO, f"torchdynamo start tracing {self.f_code.co_name}") -> 1684 super().run()
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:538, in InstructionTranslatorBase.run(self) 533 try: 534 self.output.push_tx(self) 535 while ( 536 self.instruction_pointer is not None 537 and not self.output.should_exit --> 538 and self.step() 539 ): 540 pass 541 except BackendCompilerFailed:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:501, in InstructionTranslatorBase.step(self) 499 if not hasattr(self, inst.opname): 500 unimplemented(f"missing: {inst.opname}") --> 501 getattr(self, inst.opname)(inst) 503 return inst.opname != "RETURN_VALUE" 504 except BackendCompilerFailed:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:307, in break_graph_if_unsupported..decorator..wrapper(self, inst)
305 reason = None
306 try:
--> 307 return inner_fn(self, inst)
308 except Unsupported as excp:
309 if self.has_backedge():
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:966, in InstructionTranslatorBase.CALL_FUNCTION(self, inst) 964 args = self.popn(inst.argval) 965 fn = self.pop() --> 966 self.call_function(fn, args, {})
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:435, in InstructionTranslatorBase.call_function(self, fn, args, kwargs) 430 assert isinstance(kwargs, dict) 431 assert all( 432 isinstance(x, VariableTracker) 433 for x in itertools.chain(args, kwargs.values()) 434 ) --> 435 self.push(fn.call_function(self, args, kwargs))
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py:244, in UserMethodVariable.call_function(self, tx, args, kwargs) 236 if ( 237 isinstance(self.obj, variables.NNModuleVariable) 238 and getattr(self.fn, "module", "").startswith("torch.nn.") 239 or self.is_constant 240 ): 241 return self.obj.call_method( 242 tx, self.fn.name, args, kwargs, constant=self.is_constant 243 ).add_options(self) --> 244 return super().call_function(tx, args, kwargs)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py:214, in UserFunctionVariable.call_function(self, tx, args, kwargs) 209 options = VariableTracker.propagate(self, args, kwargs.values()) 210 return invoke_and_store_as_constant( 211 tx, self.fn, self.get_name(), options, args, kwargs 212 ) --> 214 return super(UserFunctionVariable, self).call_function(tx, args, kwargs)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py:67, in BaseUserFunctionVariable.call_function(self, tx, args, kwargs) 64 def call_function( 65 self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" 66 ) -> "VariableTracker": ---> 67 return tx.inline_user_function_return( 68 self, list(self.self_args()) + list(args), kwargs 69 )
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:471, in InstructionTranslatorBase.inline_user_function_return(self, fn, args, kwargs) 469 state = self.copy_graphstate() 470 try: --> 471 result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 472 self.output.guards.update(fn.guards) 473 return result
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:1762, in InliningInstructionTranslator.inline_call(cls, parent, func, args, kwargs) 1759 @classmethod 1760 def inline_call(cls, parent, func, args, kwargs): 1761 with patch.dict(counters, {"unimplemented": counters["inline_call"]}): -> 1762 return cls.inlinecall(parent, func, args, kwargs)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:1817, in InliningInstructionTranslator.inlinecall(parent, func, args, kwargs) 1812 else: 1813 tracer = InliningInstructionTranslator( 1814 parent, code, sub_locals, parent.symbolic_globals, closure_cells, func 1815 ) -> 1817 tracer.run() 1818 assert tracer.symbolic_result is not None 1819 func.export_freevars(parent, tracer)
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:538, in InstructionTranslatorBase.run(self) 533 try: 534 self.output.push_tx(self) 535 while ( 536 self.instruction_pointer is not None 537 and not self.output.should_exit --> 538 and self.step() 539 ): 540 pass 541 except BackendCompilerFailed:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:501, in InstructionTranslatorBase.step(self) 499 if not hasattr(self, inst.opname): 500 unimplemented(f"missing: {inst.opname}") --> 501 getattr(self, inst.opname)(inst) 503 return inst.opname != "RETURN_VALUE" 504 except BackendCompilerFailed:
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py:137, in stack_op..impl(self, inst)
135 @functools.wraps(fn)
136 def impl(self: "InstructionTranslatorBase", inst: Instruction):
--> 137 self.push(fn_var.call_function(self, self.popn(nargs), {}))
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/builtin.py:322, in BuiltinVariable.call_function(self, tx, args, kwargs) 318 if self.fn is operator.truediv and isinstance( 319 args[0], variables.UnspecializedPythonVariable 320 ): 321 args[0] = args[0].convert_to_constant(tx) --> 322 return wrap_fx_proxy(tx, proxy, **options) 324 except NotImplementedError: 325 unimplemented(f"partial tensor op: {self} {args} {kwargs}")
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py:739, in wrap_fx_proxy(tx, proxy, example_value, options) 738 def wrap_fx_proxy(tx, proxy, example_value=None, options): --> 739 return wrap_fx_proxy_cls( 740 target_cls=TensorVariable, 741 tx=tx, 742 proxy=proxy, 743 example_value=example_value, 744 **options, 745 )
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py:774, in wrap_fx_proxy_cls(target_cls, tx, proxy, example_value, ignore_subclass, **options) 772 with preserve_rng_state(): 773 if example_value is None: --> 774 example_value = get_fake_value(proxy.node, tx) 776 # Handle recursive calls here 777 elif isinstance(example_value, FakeTensor):
File ~/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/torch/_dynamo/utils.py:1031, in get_fake_value(node, tx) 1027 elif isinstance( 1028 cause, torch._subclasses.fake_tensor.DynamicOutputShapeException 1029 ): 1030 unimplemented(f"dynamic shape operator: {cause.func}") -> 1031 raise TorchRuntimeError() from e
TorchRuntimeError:
from user code: File "/home/ajax/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/transformers/models/bert/modeling_bert.py", line 987, in forward extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) File "/home/ajax/miniconda3/envs/movie-env-2/lib/python3.9/site-packages/transformers/modeling_utils.py", line 791, in get_extended_attention_mask extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
Set torch._dynamo.config.verbose=True for more information
You can suppress this exception and fall back to eager by setting: torch._dynamo.config.suppress_errors = True
Minified repro
Virtual Environment:
Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
_py-xgboost-mutex 2.0 cpu_0
anyio 3.5.0 py39h06a4308_0
argon2-cffi 21.3.0 pyhd3eb1b0_0
argon2-cffi-bindings 21.2.0 py39h7f8727e_0
asttokens 2.0.5 pyhd3eb1b0_0
attrs 22.1.0 py39h06a4308_0
babel 2.11.0 py39h06a4308_0
backcall 0.2.0 pyhd3eb1b0_0
beautifulsoup4 4.11.1 py39h06a4308_0
blas 1.0 mkl
bleach 4.1.0 pyhd3eb1b0_0
bottleneck 1.3.5 py39h7deecbd_0
brotlipy 0.7.0 py39h27cfd23_1003
ca-certificates 2022.10.11 h06a4308_0
certifi 2022.12.7 py39h06a4308_0
cffi 1.15.1 py39h5eee18b_3
charset-normalizer 2.1.1 pypi_0 pypi cmake 3.25.0 pypi_0 pypi cryptography 38.0.1 py39h9ce1e76_0
cudatoolkit 11.7.0 hd8887f6_10 conda-forge dbus 1.13.18 hb2f20db_0
debugpy 1.5.1 py39h295c915_0
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pyhd3eb1b0_0
entrypoints 0.4 py39h06a4308_0
executing 0.8.3 pyhd3eb1b0_0
expat 2.4.9 h6a678d5_0
fftw 3.3.9 h27cfd23_1
filelock 3.9.0 py39h06a4308_0
flit-core 3.6.0 pyhd3eb1b0_0
fontconfig 2.14.1 h52c9d5c_1
freetype 2.12.1 h4a9f257_0
future 0.18.2 py39h06a4308_1
giflib 5.2.1 h7b6447c_0
glib 2.69.1 he621ea3_2
gst-plugins-base 1.14.0 h8213a91_2
gstreamer 1.14.0 h28cd5cc_2
huggingface_hub 0.10.1 py39h06a4308_0
icu 58.2 he6710b0_3
idna 3.4 py39h06a4308_0
importlib-metadata 4.11.3 py39h06a4308_0
intel-openmp 2021.4.0 h06a4308_3561
ipykernel 6.15.2 py39h06a4308_0
ipython 8.7.0 py39h06a4308_0
ipython_genutils 0.2.0 pyhd3eb1b0_1
ipywidgets 7.6.5 pyhd3eb1b0_1
jedi 0.18.1 py39h06a4308_1
jinja2 3.1.2 py39h06a4308_0
joblib 1.1.1 py39h06a4308_0
jpeg 9e h7f8727e_0
json5 0.9.6 pyhd3eb1b0_0
jsonschema 4.16.0 py39h06a4308_0
jupyter 1.0.0 py39h06a4308_8
jupyter_client 7.4.8 py39h06a4308_0
jupyter_console 6.4.4 py39h06a4308_0
jupyter_core 5.1.1 py39h06a4308_0
jupyter_server 1.23.4 py39h06a4308_0
jupyterlab 3.5.2 py39h06a4308_0
jupyterlab_pygments 0.1.2 py_0
jupyterlab_server 2.16.5 py39h06a4308_0
jupyterlab_widgets 1.0.0 pyhd3eb1b0_1
krb5 1.19.2 hac12032_0
ld_impl_linux-64 2.38 h1181459_1
lerc 3.0 h295c915_0
libclang 10.0.1 default_hb85057a_2
libdeflate 1.8 h7f8727e_5
libedit 3.1.20221030 h5eee18b_0
libevent 2.1.12 h8f2d780_0
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgfortran-ng 11.2.0 h00389a5_1
libgfortran5 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libllvm10 10.0.1 hbcb73fb_5
libpng 1.6.37 hbc83047_0
libpq 12.9 h16c4e8d_3
libsodium 1.0.18 h7b6447c_0
libstdcxx-ng 11.2.0 h1234567_1
libtiff 4.4.0 hecacb30_2
libuuid 1.41.5 h5eee18b_0
libwebp 1.2.4 h11a3e52_0
libwebp-base 1.2.4 h5eee18b_0
libxcb 1.15 h7f8727e_0
libxgboost 1.5.0 h6a678d5_2
libxkbcommon 1.0.1 hfa300c1_0
libxml2 2.9.14 h74e7548_0
libxslt 1.1.35 h4e12654_0
lxml 4.9.1 py39h1edc446_0
lz4-c 1.9.4 h6a678d5_0
markupsafe 2.1.1 py39h7f8727e_0
matplotlib-inline 0.1.6 py39h06a4308_0
mistune 0.8.4 py39h27cfd23_1000
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py39h7f8727e_0
mkl_fft 1.3.1 py39hd3c417c_0
mkl_random 1.2.2 py39h51133e4_0
mpmath 1.2.1 pypi_0 pypi nbclassic 0.4.8 py39h06a4308_0
nbclient 0.5.13 py39h06a4308_0
nbconvert 6.5.4 py39h06a4308_0
nbformat 5.7.0 py39h06a4308_0
ncurses 6.3 h5eee18b_3
nest-asyncio 1.5.6 py39h06a4308_0
networkx 3.0rc1 pypi_0 pypi ninja 1.10.2 h06a4308_5
ninja-base 1.10.2 hd09550d_5
notebook 6.5.2 py39h06a4308_0
notebook-shim 0.2.2 py39h06a4308_0
nspr 4.33 h295c915_0
nss 3.74 h0370c37_0
numexpr 2.8.4 py39he184ba9_0
numpy 1.24.1 pypi_0 pypi numpy-base 1.23.5 py39h31eccc5_0
openssl 1.1.1s h7f8727e_0
packaging 22.0 py39h06a4308_0
pandas 1.5.2 py39h417a72b_0
pandocfilters 1.5.0 pyhd3eb1b0_0
parso 0.8.3 pyhd3eb1b0_0
pcre 8.45 h295c915_0
pexpect 4.8.0 pyhd3eb1b0_3
pickleshare 0.7.5 pyhd3eb1b0_1003
pillow 9.3.0 pypi_0 pypi pip 22.3.1 py39h06a4308_0
platformdirs 2.5.2 py39h06a4308_0
ply 3.11 py39h06a4308_0
prometheus_client 0.14.1 py39h06a4308_0
prompt-toolkit 3.0.36 py39h06a4308_0
prompt_toolkit 3.0.36 hd3eb1b0_0
psutil 5.9.0 py39h5eee18b_0
ptyprocess 0.7.0 pyhd3eb1b0_2
pure_eval 0.2.2 pyhd3eb1b0_0
py-xgboost 1.5.0 py39h06a4308_2
pycparser 2.21 pyhd3eb1b0_0
pygments 2.11.2 pyhd3eb1b0_0
pyopenssl 22.0.0 pyhd3eb1b0_0
pyqt 5.15.7 py39h6a678d5_1
pyqt5-sip 12.11.0 py39h6a678d5_1
pyrsistent 0.18.0 py39heee7806_0
pysocks 1.7.1 py39h06a4308_0
python 3.9.15 h7a1cb2a_2
python-dateutil 2.8.2 pyhd3eb1b0_0
python-fastjsonschema 2.16.2 py39h06a4308_0
pytorch 1.12.1 cpu_py39he8d8e81_0
pytorch-triton 2.0.0+0d7e753227 pypi_0 pypi pytz 2022.7 py39h06a4308_0
pyyaml 6.0 py39h5eee18b_1
pyzmq 23.2.0 py39h6a678d5_0
qt-main 5.15.2 h327a75a_7
qt-webengine 5.15.9 hd2b0992_4
qtconsole 5.3.2 py39h06a4308_0
qtpy 2.2.0 py39h06a4308_0
qtwebkit 5.212 h4eab89a_4
readline 8.2 h5eee18b_0
regex 2022.7.9 py39h5eee18b_0
requests 2.28.1 py39h06a4308_0
scikit-learn 1.1.3 py39h6a678d5_0
scipy 1.9.3 py39h14f4228_0
send2trash 1.8.0 pyhd3eb1b0_1
setuptools 65.5.0 py39h06a4308_0
sip 6.6.2 py39h6a678d5_0
six 1.16.0 pyhd3eb1b0_1
sniffio 1.2.0 py39h06a4308_1
soupsieve 2.3.2.post1 py39h06a4308_0
sqlite 3.40.0 h5082296_0
stack_data 0.2.0 pyhd3eb1b0_0
sympy 1.11.1 pypi_0 pypi terminado 0.17.1 py39h06a4308_0
threadpoolctl 2.2.0 pyh0d69192_0
tinycss2 1.2.1 py39h06a4308_0
tk 8.6.12 h1ccaba5_0
tokenizers 0.11.4 py39h3dcd8bd_1
toml 0.10.2 pyhd3eb1b0_0
tomli 2.0.1 py39h06a4308_0
torch 2.0.0.dev20230101+cu117 pypi_0 pypi torchaudio 2.0.0.dev20230101+cu117 pypi_0 pypi torchvision 0.15.0.dev20230101+cu117 pypi_0 pypi tornado 6.2 py39h5eee18b_0
tqdm 4.64.1 py39h06a4308_0
traitlets 5.7.1 py39h06a4308_0
transformers 4.24.0 py39h06a4308_0
typing-extensions 4.4.0 py39h06a4308_0
typing_extensions 4.4.0 py39h06a4308_0
tzdata 2022g h04d1e81_0
urllib3 1.26.13 py39h06a4308_0
wcwidth 0.2.5 pyhd3eb1b0_0
webencodings 0.5.1 py39h06a4308_1
websocket-client 0.58.0 py39h06a4308_4
wheel 0.37.1 pyhd3eb1b0_0
widgetsnbextension 3.5.2 py39h06a4308_0
xgboost 1.5.0 py39h06a4308_2
xz 5.2.8 h5eee18b_0
yaml 0.2.5 h7b6447c_0
zeromq 4.3.4 h2531618_0
zipp 3.11.0 py39h06a4308_0
zlib 1.2.13 h5eee18b_0
zstd 1.5.2 ha4553b6_0