This PR adds experimental wandb support, not sure this is "landable" considering y'all uses tensorboard by default. Personally I vastly prefer wandb because I can share my training runs with a link and don't need to muck around with ssh tunneling so I'm just opening this since I'm using it myself. If there's interest I can work to land this.
To use this you just kick of a training as usual with CONFIG_FILE="./train_configs/llama3_8b.toml" ./run_llama_train.sh but also run wandb login and paste in your token
Changes in logs will look like
Also only slightly related but llama 3 tokenizer is not available on hf anymore so added instructions for 3.1 and 3.2
This PR adds experimental wandb support, not sure this is "landable" considering y'all uses tensorboard by default. Personally I vastly prefer wandb because I can share my training runs with a link and don't need to muck around with ssh tunneling so I'm just opening this since I'm using it myself. If there's interest I can work to land this.
To use this you just kick of a training as usual with
CONFIG_FILE="./train_configs/llama3_8b.toml" ./run_llama_train.sh
but also runwandb login
and paste in your tokenChanges in logs will look like
Also only slightly related but llama 3 tokenizer is not available on hf anymore so added instructions for 3.1 and 3.2
Click here for detailed logs.
[rank0]:2024-11-25 11:33:24,320 - root - INFO - Dumping traces at step 1000 [rank0]:2024-11-25 11:33:24,576 - root - INFO - Finished dumping traces in 0.26 seconds [rank0]:2024-11-25 11:33:24,577 - root - INFO - Sleeping 2 seconds for other ranks to complete [rank0]:wandb: [rank0]:wandb: [rank0]:wandb: Run history: [rank0]:wandb: loss_metrics/global_avg_loss █▆▅▄▄▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: loss_metrics/global_max_loss █▇▄▄▃▃▄▃▃▆▃▃▃▃▃▃▂▂▂▂▃▂▂▃▁▂▂▂▁▃▂▁▂▁▂▂▁▄▁▁ [rank0]:wandb: memory/max_active(%) ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: memory/max_active(GiB) ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: memory/max_reserved(%) ▁███████████████████████████████████████ [rank0]:wandb: memory/max_reserved(GiB) ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: memory/num_alloc_retries ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: memory/num_ooms ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ [rank0]:wandb: mfu(%) ▁███████▇██████▇█████████▇█▇████████████ [rank0]:wandb: step ▁▁▁▁▂▂▂▂▂▂▃▃▃▃▃▃▃▄▄▄▄▄▅▅▅▆▆▆▆▇▇▇▇▇▇▇████ [rank0]:wandb: time_metrics/data_loading(%) ▁▁▁▁▂▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▂▁▁▂▁▁▁▂ [rank0]:wandb: time_metrics/data_loading(s) ▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂ [rank0]:wandb: time_metrics/end_to_end(s) ▁▇▇▇▇█▇▇▇█▇▇▇▇▇▇▇▇▇▇▇▇██▇▇▇█▇▇▇▇▇▇█▇█▇▇▇ [rank0]:wandb: wps ███▁████▄█▇▅████████▅▄████▇███▇▄████▇██▇ [rank0]:wandb: [rank0]:wandb: Run summary: [rank0]:wandb: loss_metrics/global_avg_loss 4.53519 [rank0]:wandb: loss_metrics/global_max_loss 4.99517 [rank0]:wandb: memory/max_active(%) 43.33611 [rank0]:wandb: memory/max_active(GiB) 41.17145 [rank0]:wandb: memory/max_reserved(%) 52.19301 [rank0]:wandb: memory/max_reserved(GiB) 49.58594 [rank0]:wandb: memory/num_alloc_retries 0 [rank0]:wandb: memory/num_ooms 0 [rank0]:wandb: mfu(%) 30.75216 [rank0]:wandb: step 1000 [rank0]:wandb: time_metrics/data_loading(%) 1.01461 [rank0]:wandb: time_metrics/data_loading(s) 0.01583 [rank0]:wandb: time_metrics/end_to_end(s) 1.55993 [rank0]:wandb: wps 5251.52034 [rank0]:wandb: [rank0]:wandb: 🚀 View run skilled-glitter-1 at: https://wandb.ai/sahancpal-meta/torchtitan/runs/r1zqr75b