Open MKlmt opened 2 months ago
Thanks for the report @MKlmt . We'll be consolidating the video decoding/encoding efforts of pytorch within the https://github.com/pytorch/torchcodec/ repo. Torchcodec doesn't support writing videos yet, but that's in scope. That means we won't be updating the video capabilities of torchvision - hopefully you can still use the torchaudio API in the mean time for the correct behavior
Alright. Thank you! Looking forward to Torchcodec video writing function :)
🐛 Describe the bug
Hi, I think I found a bug in torchvision's write_video. When reading a video (with audio) and writing it again without any modifications, the number of audio frames differs by 1024 frames between the original video(/audio) and the newly saved video(/audio). Using torchaudio's save and load function works fine. This is my minimal working example:
I checked the fps and audio_fps numbers. They are correct for my video. I tested it for different mp4 files with the same results.
In addition, I found out that the written video is always stereo (2 audio channels) even though my original audio is mono (1 audio channel) in my case.
I hope someone can help me with that, Thank you.
Versions
Collecting environment information... PyTorch version: 2.2.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.22.4 Libc version: glibc-2.31
Python version: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-513.5.1.el8_9.x86_64-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.3.109 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB
Nvidia driver version: 555.42.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 1 Core(s) per socket: 16 Socket(s): 2 NUMA node(s): 8 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7313 16-Core Processor Stepping: 1 CPU MHz: 2994.359 BogoMIPS: 5988.71 Virtualization: AMD-V L1d cache: 1 MiB L1i cache: 1 MiB L2 cache: 16 MiB L3 cache: 256 MiB NUMA node0 CPU(s): 0-3 NUMA node1 CPU(s): 4-7 NUMA node2 CPU(s): 8-11 NUMA node3 CPU(s): 12-15 NUMA node4 CPU(s): 16-19 NUMA node5 CPU(s): 20-23 NUMA node6 CPU(s): 24-27 NUMA node7 CPU(s): 28-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Versions of relevant libraries: [pip3] facenet-pytorch==2.6.0 [pip3] numpy==1.26.4 [pip3] pytorch-lightning==1.9.0 [pip3] pytorchvideo==0.1.5 [pip3] torch==2.2.0 [pip3] torch-tb-profiler==0.4.1 [pip3] torchaudio==2.2.0 [pip3] torchinfo==1.8.0 [pip3] torchmetrics==1.4.0.post0 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.17.2 [pip3] triton==2.2.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] torch 1.12.0+cu113 pypi_0 pypi [conda] torch-tb-profiler 0.4.1 pypi_0 pypi [conda] torchaudio 0.12.0+cu113 pypi_0 pypi [conda] torchvision 0.13.0+cu113 pypi_0 pypi