Traceback (most recent call last):
File ""xla/benchmarks/experiment_runner.py"", line 945, in <module>
main()
File ""xla/benchmarks/experiment_runner.py"", line 941, in main
runner.run()
File ""xla/benchmarks/experiment_runner.py"", line 61, in run
self.run_single_config()
File ""xla/benchmarks/experiment_runner.py"", line 256, in run_single_config
metrics, last_output = self.run_once_and_gather_metrics(
File ""xla/benchmarks/experiment_runner.py"", line 345, in run_once_and_gather_metrics
output, _ = loop(iter_fn=self._default_iter_fn)
File ""xla/benchmarks/experiment_runner.py"", line 302, in loop
output, timing, trace = iter_fn(benchmark_experiment, benchmark_model,
File ""xla/benchmarks/experiment_runner.py"", line 218, in _default_iter_fn
output = benchmark_model.model_iter_fn(
File ""/home/ysiraichi/pytorch/torch/_dynamo/eval_frame.py"", line 390, in _fn
return fn(*args, **kwargs)
File ""/home/ysiraichi/pytorch/xla/benchmarks/benchmark_model.py"", line 170, in eval
pred = self.module(*inputs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1527, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1536, in _call_impl
return forward_call(*args, **kwargs)
File ""/home/ysiraichi/.local/lib/python3.8/site-packages/detectron2/modeling/meta_arch/dense_detector.py"", line 95, in forward
images = self.preprocess_image(batched_inputs)
File ""/home/ysiraichi/.local/lib/python3.8/site-packages/detectron2/modeling/meta_arch/dense_detector.py"", line 96, in torch_dynamo_resume_in_forward_at_95
features = self.backbone(images.tensor)
File ""/home/ysiraichi/.local/lib/python3.8/site-packages/detectron2/modeling/meta_arch/dense_detector.py"", line 98, in torch_dynamo_resume_in_forward_at_96
predictions = self.head(features)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1527, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1536, in _call_impl
return forward_call(*args, **kwargs)
File ""/home/ysiraichi/.local/lib/python3.8/site-packages/detectron2/modeling/meta_arch/fcos.py"", line 324, in forward
logits.append(self.cls_score(self.cls_subnet(feature)))
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1527, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1536, in _call_impl
return forward_call(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/container.py"", line 217, in forward
input = module(input)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1527, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/module.py"", line 1536, in _call_impl
return forward_call(*args, **kwargs)
File ""/home/ysiraichi/pytorch/torch/nn/modules/conv.py"", line 460, in forward
return self._conv_forward(input, self.weight, self.bias)
File ""/home/ysiraichi/pytorch/torch/nn/modules/conv.py"", line 456, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Input type (float) and bias type (c10::Half) should be the same
🐛 Bug
Running the upstreamed benchmarking scripts with the following command results in an unexpected error.
Environment
cc @miladm @JackCaoG @vanbasten23 @zpcore @frgossen @golechwierowicz @cota