Open Raji-Ahmad opened 2 years ago
I am having this same error.
me too, I'm using the notebook on colab
The issue is from the pytorch version. I solved it by creating a new environment and installed exact version of libraries in the requirements.txt
I get this error when I try to render frames. How do I solve this?
RuntimeError Traceback (most recent call last) Cell In [5], line 35 32 for c_o in CONFIG_OVERRIDES: 33 cfg = compose(config_name=CONFIG_DEFAULTS, 34 overrides=[f"conf={c_o}"]) ---> 35 render_frames(cfg)
File ~\anaconda3\envs\pytti-tools\lib\site-packages\hydra\main.py:79, in main..main_decorator..decorated_main(cfg_passthrough)
76 @functools.wraps(task_function)
77 def decorated_main(cfg_passthrough: Optional[DictConfig] = None) -> Any:
78 if cfg_passthrough is not None:
---> 79 return task_function(cfg_passthrough)
80 else:
81 args_parser = get_args_parser()
File ~\anaconda3\envs\pytti-tools\lib\site-packages\pytti\workhorse.py:622, in _main(cfg) 620 torch.cuda.empty_cache() 621 else: --> 622 do_run() 623 logger.info("Complete.") 624 gc.collect()
File ~\anaconda3\envs\pytti-tools\lib\site-packages\pytti\workhorse.py:569, in _main..do_run()
567 for scene in prompts[skip_prompts:]:
568 logger.info("Running prompt:", " | ".join(map(str, scene)))
--> 569 i += model.run_steps(
570 params.steps_per_scene - skip_steps,
571 scene,
572 last_scene,
573 loss_augs,
574 interp_steps=params.interpolation_steps,
575 i_offset=i,
576 skipped_steps=skip_steps,
577 gradient_accumulation_steps=params.gradient_accumulation_steps,
578 )
579 skip_steps = 0
580 model.clear_dataframe()
File ~\anaconda3\envs\pytti-tools\lib\site-packages\pytti\ImageGuide.py:188, in DirectImageGuide.run_steps(self, n_steps, prompts, interp_prompts, loss_augs, stop, interp_steps, i_offset, skipped_steps, gradient_accumulation_steps) 160 for i in tqdm(range(n_steps)): 161 # not a huge fan of this. 162 # currently need it for PixelImage.encode_image (...) 168 # if not self.null_update: 169 # self.update(i + i_offset, i + skipped_steps) 170 self.update( 171 model=self, 172 img=self.image_rep, (...) 186 semantic_init_prompt=self.semantic_init_prompt, 187 ) --> 188 losses = self.train( 189 i + skipped_steps, 190 prompts, 191 interp_prompts, 192 loss_augs, 193 interp_steps=interp_steps, 194 gradient_accumulation_steps=gradient_accumulation_steps, 195 ) 196 if losses["TOTAL"] <= stop: 197 break
File ~\anaconda3\envs\pytti-tools\lib\site-packages\pytti\ImageGuide.py:347, in DirectImageGuide.train(self, i, prompts, interp_prompts, loss_augs, interp_steps, save_loss, gradient_accumulation_steps) 344 total_loss_mb /= gradient_accumulation_steps 346 # total_loss_mb.backward() --> 347 total_loss_mb.backward(retain_graph=True) 348 # total_loss += total_loss_mb # this is causing it to break 349 # total_loss = total_loss_mb 350 351 # losses = [{k:v} for k,v in losses_accumulator.items()] 352 # losses_raw = [{k:v} for k,v in losses_raw_accumulator.items()] 353 losses_raw.append({"TOTAL": total_loss}) # this needs to be fixed
File ~\anaconda3\envs\pytti-tools\lib\site-packages\torch_tensor.py:487, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs) 477 if has_torch_function_unary(self): 478 return handle_torch_function( 479 Tensor.backward, 480 (self,), (...) 485 inputs=inputs, 486 ) --> 487 torch.autograd.backward( 488 self, gradient, retain_graph, create_graph, inputs=inputs 489 )
File ~\anaconda3\envs\pytti-tools\lib\site-packages\torch\autograd__init__.py:197, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs) 192 retain_graph = create_graph 194 # The reason we repeat same the comment below is that 195 # some Python versions print out the first line of a multi-line function 196 # calls in the traceback and some print out the last line --> 197 Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 198 tensors, gradtensors, retain_graph, create_graph, inputs, 199 allow_unreachable=True, accumulate_grad=True)
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [40, 1]], which is output 0 of NormBackward1, is at version 4; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).