MobileNetV1, MobileNetV2, VGG based SSD/SSD-lite implementation in Pytorch 1.0 / Pytorch 0.4. Out-of-box support for retraining on Open Images dataset. ONNX and Caffe2 support. Experiment Ideas like CoordConv.
the conversion of the model to caffe2 via ONNX does not work with Pytorch 1.0.1. The initial script converts the model to ONNX, but the conversion to caffe2 fails, as
init_net, predict_net = c2.onnx_graph_to_caffe2_net(model)
results in the Segmentation fault (core dumped) error.
import onnx
import caffe2.python.onnx.backend as onnx_caffe2_backend
from caffe2.python.predictor import mobile_exporter
model = onnx.load('models/mb1-ssd.onnx')
prepared_backend = onnx_caffe2_backend.prepare(model)
c2_workspace = prepared_backend.workspace
c2_model = prepared_backend.predict_net
init_net, predict_net = mobile_exporter.Export(c2_workspace, c2_model, c2_model.external_input)
but it also fails:
...anaconda3/lib/python3.6/site-packages/caffe2/python/predictor/mobile_exporter.py", line 41, in add_tensor
kTypeNameMapper[blob.dtype],
KeyError: dtype('float64')
Hi,
the conversion of the model to caffe2 via ONNX does not work with Pytorch 1.0.1. The initial script converts the model to ONNX, but the conversion to caffe2 fails, as
init_net, predict_net = c2.onnx_graph_to_caffe2_net(model)
results in theSegmentation fault (core dumped)
error.I aslo tried to adapt a script from [https://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html]() :
but it also fails: