Setting up a new session...
Without the incoming socket you cannot receive events from the server or register event handlers to your Visdom client.
Epoch 1 --- Training --- :: 0%| | 0/164 [00:00<?, ?it/s]/home/ukhan18/anaconda3/envs/xmod/lib/python3.6/site-packages/torch/nn/functional.py:2494: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
Epoch 1 --- Training --- :: 0%| | 0/164 [10:59<?, ?it/s]
Traceback (most recent call last):
File "train.py", line 197, in <module>
main()
File "train.py", line 66, in main
pred = trainer.train_op(data, target)
File "/home/ukhan18/DeepCrack/codes/trainer.py", line 39, in train_op
pred_output, pred_fuse5, pred_fuse4, pred_fuse3, pred_fuse2, pred_fuse1, = self.model(input)
File "/home/ukhan18/anaconda3/envs/xmod/lib/python3.6/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/home/ukhan18/anaconda3/envs/xmod/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward
return self.module(*inputs[0], **kwargs[0])
File "/home/ukhan18/anaconda3/envs/xmod/lib/python3.6/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/home/ukhan18/DeepCrack/codes/model/deepcrack.py", line 155, in forward
output = self.final(torch.cat([fuse5,fuse4,fuse3,fuse2,fuse1],1))
RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 1. Got 600 and 592 in dimension 2 at /tmp/pip-req-build-ocx5vxk7/aten/src/THC/generic/THCTensorMath.cu:71
I can not solve this error. Could you please tell me what could be the problem?
command ``python train.py```
**Dir layout*** data/ ├── CrackTree │ ├── crack_plus_test_image │ ├── crack_plus_test_mask │ ├── crack_train_image │ └── crack_train_mask ├── pycache ├── test.txt ├── train.txt ├── train_example.txt └── val_example.txt
Environment