qnbhd / mljet

Minimalistic ML-models auto deployment tool
MIT License
67 stars 4 forks source link

chore(deps): update requirements to v1.24.1 #109

Closed renovate[bot] closed 1 year ago

renovate[bot] commented 1 year ago

Mend Renovate

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source) ==1.23.5 -> ==1.24.1 age adoption passing confidence

Release Notes

numpy/numpy ### [`v1.24.1`](https://togithub.com/numpy/numpy/releases/tag/v1.24.1) [Compare Source](https://togithub.com/numpy/numpy/compare/v1.24.0...v1.24.1) ### NumPy 1.24.1 Release Notes NumPy 1.24.1 is a maintenance release that fixes bugs and regressions discovered after the 1.24.0 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Ben Greiner + - Charles Harris - Clément Robert - Matteo Raso - Matti Picus - Melissa Weber Mendonça - Miles Cranmer - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg #### Pull requests merged A total of 18 pull requests were merged for this release. - [#​22820](https://togithub.com/numpy/numpy/pull/22820): BLD: add workaround in setup.py for newer setuptools - [#​22830](https://togithub.com/numpy/numpy/pull/22830): BLD: CIRRUS_TAG redux - [#​22831](https://togithub.com/numpy/numpy/pull/22831): DOC: fix a couple typos in 1.23 notes - [#​22832](https://togithub.com/numpy/numpy/pull/22832): BUG: Fix refcounting errors found using pytest-leaks - [#​22834](https://togithub.com/numpy/numpy/pull/22834): BUG, SIMD: Fix invalid value encountered in several ufuncs - [#​22837](https://togithub.com/numpy/numpy/pull/22837): TST: ignore more np.distutils.log imports - [#​22839](https://togithub.com/numpy/numpy/pull/22839): BUG: Do not use getdata() in np.ma.masked_invalid - [#​22847](https://togithub.com/numpy/numpy/pull/22847): BUG: Ensure correct behavior for rows ending in delimiter in... - [#​22848](https://togithub.com/numpy/numpy/pull/22848): BUG, SIMD: Fix the bitmask of the boolean comparison - [#​22857](https://togithub.com/numpy/numpy/pull/22857): BLD: Help raspian arm + clang 13 about \__builtin_mul_overflow - [#​22858](https://togithub.com/numpy/numpy/pull/22858): API: Ensure a full mask is returned for masked_invalid - [#​22866](https://togithub.com/numpy/numpy/pull/22866): BUG: Polynomials now copy properly ([#​22669](https://togithub.com/numpy/numpy/issues/22669)) - [#​22867](https://togithub.com/numpy/numpy/pull/22867): BUG, SIMD: Fix memory overlap in ufunc comparison loops - [#​22868](https://togithub.com/numpy/numpy/pull/22868): BUG: Fortify string casts against floating point warnings - [#​22875](https://togithub.com/numpy/numpy/pull/22875): TST: Ignore nan-warnings in randomized out tests - [#​22883](https://togithub.com/numpy/numpy/pull/22883): MAINT: restore npymath implementations needed for freebsd - [#​22884](https://togithub.com/numpy/numpy/pull/22884): BUG: Fix integer overflow in in1d for mixed integer dtypes [#​22877](https://togithub.com/numpy/numpy/issues/22877) - [#​22887](https://togithub.com/numpy/numpy/pull/22887): BUG: Use whole file for encoding checks with `charset_normalizer`. #### Checksums ##### MD5 9e543db90493d6a00939bd54c2012085 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl 4ebd7af622bf617b4876087e500d7586 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl 0c0a3012b438bb455a6c2fadfb1be76a numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0bddb527345449df624d3cb9aa0e1b75 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b246beb773689d97307f7b4c2970f061 numpy-1.24.1-cp310-cp310-win32.whl 1f3823999fce821a28dee10ac6fdd721 numpy-1.24.1-cp310-cp310-win_amd64.whl 8eedcacd6b096a568e4cb393d43b3ae5 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 50bddb05acd54b4396100a70522496dd numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl 2a76bd9da8a78b44eb816bd70fa3aee3 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9e86658a414272f9749bde39344f9b76 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 915dfb89054e1631574a22a9b53a2b25 numpy-1.24.1-cp311-cp311-win32.whl ab7caa2c6c20e1fab977e1a94dede976 numpy-1.24.1-cp311-cp311-win_amd64.whl 8246de961f813f5aad89bca3d12f81e7 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 58366b1a559baa0547ce976e416ed76d numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl a96f29bf106a64f82b9ba412635727d1 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c32a43bdb85121614ab3e99929e33c7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b20949ed21683ad7c9cbdf9ebb2439 numpy-1.24.1-cp38-cp38-win32.whl 9e9f1577f874286a8bdff8dc5551eb9f numpy-1.24.1-cp38-cp38-win_amd64.whl 4383c1137f0287df67c364fbdba2bc72 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 987f22c49b2be084b5d72f88f347d31e numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 848ad020bba075ed8f19072c64dcd153 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 864b159e644848bc25f881907dbcf062 numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl db339ec0b2693cac2d7cf9ca75c334b1 numpy-1.24.1-cp39-cp39-win32.whl fec91d4c85066ad8a93816d71b627701 numpy-1.24.1-cp39-cp39-win_amd64.whl 619af9cd4f33b668822ae2350f446a15 numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 46f19b4b147f8836c2bd34262fabfffa numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e85b245c57a10891b3025579bf0cf298 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl dd3aaeeada8e95cc2edf9a3a4aa8b5af numpy-1.24.1.tar.gz ##### SHA256 179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7 numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2 numpy-1.24.1-cp310-cp310-win32.whl b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2 numpy-1.24.1-cp310-cp310-win_amd64.whl 7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032 numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36 numpy-1.24.1-cp311-cp311-win32.whl de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51 numpy-1.24.1-cp311-cp311-win_amd64.whl b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954 numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1 numpy-1.24.1-cp38-cp38-win32.whl 6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c numpy-1.24.1-cp38-cp38-win_amd64.whl 28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7 numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f numpy-1.24.1-cp39-cp39-win32.whl ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e numpy-1.24.1-cp39-cp39-win_amd64.whl ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086 numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl 2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2 numpy-1.24.1.tar.gz ### [`v1.24.0`](https://togithub.com/numpy/numpy/releases/tag/v1.24.0) [Compare Source](https://togithub.com/numpy/numpy/compare/v1.23.5...v1.24.0) ##### NumPy 1.24 Release Notes The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are - Many new deprecations, check them out. - Many expired deprecations, - New F2PY features and fixes. - New "dtype" and "casting" keywords for stacking functions. See below for the details, This release supports Python versions 3.8-3.11. ##### Deprecations ##### Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose The `numpy.fastCopyAndTranspose` function has been deprecated. Use the corresponding copy and transpose methods directly: arr.T.copy() The underlying C function `PyArray_CopyAndTranspose` has also been deprecated from the NumPy C-API. ([gh-22313](https://togithub.com/numpy/numpy/pull/22313)) ##### Conversion of out-of-bound Python integers Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a `DeprecationWarning` now: np.uint8(-1) np.array([3000], dtype=np.int8) Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as `np.uint8(-1)` giving `np.iinfo(np.uint8).max`. Note that conversion between NumPy integers is unaffected, so that `np.array(-1).astype(np.uint8)` continues to work and use C integer overflow logic. For negative values, it will also work to view the array: `np.array(-1, dtype=np.int8).view(np.uint8)`. In some cases, using `np.iinfo(np.uint8).max` or `val % 2**8` may also work well. In rare cases input data may mix both negative values and very large unsigned values (i.e. `-1` and `2**63`). There it is unfortunately necessary to use `%` on the Python value or use signed or unsigned conversion depending on whether negative values are expected. ([gh-22385](https://togithub.com/numpy/numpy/pull/22385)) ##### Deprecate `msort` The `numpy.msort` function is deprecated. Use `np.sort(a, axis=0)` instead. ([gh-22456](https://togithub.com/numpy/numpy/pull/22456)) ##### `np.str0` and similar are now deprecated The scalar type aliases ending in a 0 bit size: `np.object0`, `np.str0`, `np.bytes0`, `np.void0`, `np.int0`, `np.uint0` as well as `np.bool8` are now deprecated and will eventually be removed. ([gh-22607](https://togithub.com/numpy/numpy/pull/22607)) ##### Expired deprecations - The `normed` keyword argument has been removed from \[np.histogram]{.title-ref}, \[np.histogram2d]{.title-ref}, and \[np.histogramdd]{.title-ref}. Use `density` instead. If `normed` was passed by position, `density` is now used. ([gh-21645](https://togithub.com/numpy/numpy/pull/21645)) - Ragged array creation will now always raise a `ValueError` unless `dtype=object` is passed. This includes very deeply nested sequences. ([gh-22004](https://togithub.com/numpy/numpy/pull/22004)) - Support for Visual Studio 2015 and earlier has been removed. - Support for the Windows Interix POSIX interop layer has been removed. ([gh-22139](https://togithub.com/numpy/numpy/pull/22139)) - Support for Cygwin < 3.3 has been removed. ([gh-22159](https://togithub.com/numpy/numpy/pull/22159)) - The mini() method of `np.ma.MaskedArray` has been removed. Use either `np.ma.MaskedArray.min()` or `np.ma.minimum.reduce()`. - The single-argument form of `np.ma.minimum` and `np.ma.maximum` has been removed. Use `np.ma.minimum.reduce()` or `np.ma.maximum.reduce()` instead. ([gh-22228](https://togithub.com/numpy/numpy/pull/22228)) - Passing dtype instances other than the canonical (mainly native byte-order) ones to `dtype=` or `signature=` in ufuncs will now raise a `TypeError`. We recommend passing the strings `"int8"` or scalar types `np.int8` since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.) ([gh-22540](https://togithub.com/numpy/numpy/pull/22540)) - The `dtype=` argument to comparison ufuncs is now applied correctly. That means that only `bool` and `object` are valid values and `dtype=object` is enforced. ([gh-22541](https://togithub.com/numpy/numpy/pull/22541)) - The deprecation for the aliases `np.object`, `np.bool`, `np.float`, `np.complex`, `np.str`, and `np.int` is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future. ([gh-22607](https://togithub.com/numpy/numpy/pull/22607)) ##### Compatibility notes ##### `array.fill(scalar)` may behave slightly different `numpy.ndarray.fill` may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment: arr = np.array([1]) # with any dtype/value arr.fill(scalar) ##### is now identical to: arr[0] = scalar Previously casting may have produced slightly different answers when using values that could not be represented in the target `dtype` or when the target had `object` dtype. ([gh-20924](https://togithub.com/numpy/numpy/pull/20924)) ##### Subarray to object cast now copies Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned: arr = np.ones(3, dtype=[("f", "i", 3)]) subarray_fields = arr.astype(object)[0] subarray = subarray_fields[0] # "f" field np.may_share_memory(subarray, arr) Is now always false. While previously it was true for the specific cast. ([gh-21925](https://togithub.com/numpy/numpy/pull/21925)) ##### Returned arrays respect uniqueness of dtype kwarg objects When the `dtype` keyword argument is used with :py`np.array()`{.interpreted-text role="func"} or :py`asarray()`{.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller. In some cases this change means that a *view* rather than the input array is returned. The following is an example for this on 64bit Linux where `long` and `longlong` are the same precision but different `dtypes`: >>> arr = np.array([1, 2, 3], dtype="long") >>> new_dtype = np.dtype("longlong") >>> new = np.asarray(arr, dtype=new_dtype) >>> new.dtype is new_dtype True >>> new is arr False Before the change, the `dtype` did not match because `new is arr` was `True`. ([gh-21995](https://togithub.com/numpy/numpy/pull/21995)) ##### DLPack export raises `BufferError` When an array buffer cannot be exported via DLPack a `BufferError` is now always raised where previously `TypeError` or `RuntimeError` was raised. This allows falling back to the buffer protocol or `__array_interface__` when DLPack was tried first. ([gh-22542](https://togithub.com/numpy/numpy/pull/22542)) ##### NumPy builds are no longer tested on GCC-6 Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8. ([gh-22598](https://togithub.com/numpy/numpy/pull/22598)) ##### New Features ##### New attribute `symbol` added to polynomial classes The polynomial classes in the `numpy.polynomial` package have a new `symbol` attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing: >>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y") >>> print(P_y) 1.0 + 0.0·y¹ - 1.0·y² Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate: >>> P = np.polynomial.Polynomial([1, -1]) # default symbol is "x" >>> P_z = np.polynomial.Polynomial([1, 1], symbol="z") >>> P * P_z Traceback (most recent call last) ... ValueError: Polynomial symbols differ The symbol can be any valid Python identifier. The default is `symbol=x`, consistent with existing behavior. ([gh-16154](https://togithub.com/numpy/numpy/pull/16154)) ##### F2PY support for Fortran `character` strings F2PY now supports wrapping Fortran functions with: - character (e.g. `character x`) - character array (e.g. `character, dimension(n) :: x`) - character string (e.g. `character(len=10) x`) - and character string array (e.g. `character(len=10), dimension(n, m) :: x`) arguments, including passing Python unicode strings as Fortran character string arguments. ([gh-19388](https://togithub.com/numpy/numpy/pull/19388)) ##### New function `np.show_runtime` A new function `numpy.show_runtime` has been added to display the runtime information of the machine in addition to `numpy.show_config` which displays the build-related information. ([gh-21468](https://togithub.com/numpy/numpy/pull/21468)) ##### `strict` option for `testing.assert_array_equal` The `strict` option is now available for `testing.assert_array_equal`. Setting `strict=True` will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type. ([gh-21595](https://togithub.com/numpy/numpy/pull/21595)) ##### New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://togithub.com/numpy/numpy/pull/21623)) ##### `casting` and `dtype` keyword arguments for `numpy.stack` The `casting` and `dtype` keyword arguments are now available for `numpy.stack`. To use them, write `np.stack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.vstack` The `casting` and `dtype` keyword arguments are now available for `numpy.vstack`. To use them, write `np.vstack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.hstack` The `casting` and `dtype` keyword arguments are now available for `numpy.hstack`. To use them, write `np.hstack(..., dtype=None, casting='same_kind')`. ([gh-21627](https://togithub.com/numpy/numpy/pull/21627)) ##### The bit generator underlying the singleton RandomState can be changed The singleton `RandomState` instance exposed in the `numpy.random` module is initialized at startup with the `MT19937` bit generator. The new function `set_bit_generator` allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function `get_bit_generator` returns the current bit generator being used by the singleton `RandomState`. This is provided to simplify restoring the original source of randomness if required. The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of `Generator`. The function `default_rng` simplifies instantiation: >>> rg = np.random.default_rng(3728973198) >>> rg.random() The same bit generator can then be shared with the singleton instance so that calling functions in the `random` module will use the same bit generator: >>> orig_bit_gen = np.random.get_bit_generator() >>> np.random.set_bit_generator(rg.bit_generator) >>> np.random.normal() The swap is permanent (until reversed) and so any call to functions in the `random` module will use the new bit generator. The original can be restored if required for code to run correctly: >>> np.random.set_bit_generator(orig_bit_gen) ([gh-21976](https://togithub.com/numpy/numpy/pull/21976)) ##### `np.void` now has a `dtype` argument NumPy now allows constructing structured void scalars directly by passing the `dtype` argument to `np.void`. ([gh-22316](https://togithub.com/numpy/numpy/pull/22316)) ##### Improvements ##### F2PY Improvements - The generated extension modules don't use the deprecated NumPy-C API anymore - Improved `f2py` generated exception messages - Numerous bug and `flake8` warning fixes - various CPP macros that one can use within C-expressions of signature files are prefixed with `f2py_`. For example, one should use `f2py_len(x)` instead of `len(x)` - A new construct `character(f2py_len=...)` is introduced to support returning assumed length character strings (e.g. `character(len=*)`) from wrapper functions A hook to support rewriting `f2py` internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in `C` expressions. ([gh-19388](https://togithub.com/numpy/numpy/pull/19388)) ##### IBM zSystems Vector Extension Facility (SIMD) Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide. ([gh-20913](https://togithub.com/numpy/numpy/pull/20913)) ##### NumPy now gives floating point errors in casts In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like: np.array([2e300]).astype(np.float32) # overflow for float32 np.array([np.inf]).astype(np.int64) Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings. Users can modify the behavior of these warnings using `np.errstate`. Note that for float to int casts, the exact warnings that are given may be platform dependent. For example: arr = np.full(100, value=1000, dtype=np.float64) arr.astype(np.int8) May give a result equivalent to (the intermediate cast means no warning is given): arr.astype(np.int64).astype(np.int8) May return an undefined result, with a warning set: RuntimeWarning: invalid value encountered in cast The precise behavior is subject to the C99 standard and its implementation in both software and hardware. ([gh-21437](https://togithub.com/numpy/numpy/pull/21437)) ##### F2PY supports the value attribute The Fortran standard requires that variables declared with the `value` attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So `integer, intent(in), value :: x` in Fortran codes will have correct wrappers generated. ([gh-21807](https://togithub.com/numpy/numpy/pull/21807)) ##### Added pickle support for third-party BitGenerators The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling `Generator` instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a `Generator` that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy. ([gh-22014](https://togithub.com/numpy/numpy/pull/22014)) ##### arange() now explicitly fails with dtype=str Previously, the `np.arange(n, dtype=str)` function worked for `n=1` and `n=2`, but would raise a non-specific exception message for other values of `n`. Now, it raises a \[TypeError]{.title-ref} informing that `arange` does not support string dtypes: >>> np.arange(2, dtype=str) Traceback (most recent call last) ... TypeError: arange() not supported for inputs with DType . ([gh-22055](https://togithub.com/numpy/numpy/pull/22055)) ##### `numpy.typing` protocols are now runtime checkable The protocols used in `numpy.typing.ArrayLike` and `numpy.typing.DTypeLike` are now properly marked as runtime checkable, making them easier to use for runtime type checkers. ([gh-22357](https://togithub.com/numpy/numpy/pull/22357)) ##### Performance improvements and changes ##### Faster version of `np.isin` and `np.in1d` for integer arrays `np.in1d` (used by `np.isin`) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use `kind="sort"` or `kind="table"` to force the old or new method, respectively. ([gh-12065](https://togithub.com/numpy/numpy/pull/12065)) ##### Faster comparison operators The comparison functions (`numpy.equal`, `numpy.not_equal`, `numpy.less`, `numpy.less_equal`, `numpy.greater` and `numpy.greater_equal`) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000). ([gh-21483](https://togithub.com/numpy/numpy/pull/21483)) ##### Changes ##### Better reporting of integer division overflow Integer division overflow of scalars and arrays used to provide a `RuntimeWarning` and the return value was undefined leading to crashes at rare occasions: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) :1: RuntimeWarning: divide by zero encountered in floor_divide array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) Integer division overflow now returns the input dtype's minimum value and raise the following `RuntimeWarning`: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) :1: RuntimeWarning: overflow encountered in floor_divide array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648], dtype=int32) ([gh-21506](https://togithub.com/numpy/numpy/pull/21506)) ##### `masked_invalid` now modifies the mask in-place When used with `copy=False`, `numpy.ma.masked_invalid` now modifies the input masked array in-place. This makes it behave identically to `masked_where` and better matches the documentation. ([gh-22046](https://togithub.com/numpy/numpy/pull/22046)) ##### `nditer`/`NpyIter` allows all allocating all operands The NumPy iterator available through `np.nditer` in Python and as `NpyIter` in C now supports allocating all arrays. The iterator shape defaults to `()` in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs. ([gh-22457](https://togithub.com/numpy/numpy/pull/22457)) ##### Checksums ##### MD5 d60311246bd71b177258ce06e2a4ec57 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 02022b335938af55cb83bbaebdbff8e1 numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 02b35d6612369fcc614c6223aaec0119 numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7b8ad389a9619db3e1f8243fc0cfe63d numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ff4acbb7b1258ccbd528c151eb0fe84 numpy-1.24.0-cp310-cp310-win32.whl d194c96601222db97b0af54fce1cfb1d numpy-1.24.0-cp310-cp310-win_amd64.whl 5fe4eb551a9312e37492da9f5bfb8545 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl a8e836a768f73e9f509b11c3873c7e09 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl 10404d6d1a5a9624f85018f61110b2be numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cfdb0cb844f1db9be2cde998be54d65f numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 73bc66ad3ae8656ba18d64db98feb5e1 numpy-1.24.0-cp311-cp311-win32.whl 4bbc30a53009c48d364d4dc2c612af95 numpy-1.24.0-cp311-cp311-win_amd64.whl 94ce5f6a09605a9675a0d464b1ec6597 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e5e42b69a209eda7e6895dda39ea8610 numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl 36eb6143d1e2aac3c618275edf636983 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 712c3718e8b53ff04c626cc4c78492aa numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0a1a48a8e458bd4ce581169484c17e4f numpy-1.24.0-cp38-cp38-win32.whl c8ab7e4b919548663568a5b5a8b5eab4 numpy-1.24.0-cp38-cp38-win_amd64.whl 1783a5d769566111d93c474c79892c01 numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl c9e77130674372c73f8209d58396624d numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 14c0f2f52f20f13a81bba7df27f30145 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c106393b46fa0302dbac49b14a4dfed4 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c83e6d6946f32820f166c3f1ff010ab6 numpy-1.24.0-cp39-cp39-win32.whl acd5a4737d1094d5f40afa584dbd6d79 numpy-1.24.0-cp39-cp39-win_amd64.whl 26e32f942c9fd62f64fd9bf6df95b5b1 numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4f027df0cc313ca626b106849999de13 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac58db9a90d0bec95bc7850b9e462f34 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl 1ca41c84ad9a116402a025d21e35bc64 numpy-1.24.0.tar.gz ##### SHA256 6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0 numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d numpy-1.24.0-cp310-cp310-win32.whl 4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98 numpy-1.24.0-cp310-cp310-win_amd64.whl 4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91 numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72 numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b numpy-1.24.0-cp311-cp311-win32.whl 90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0 numpy-1.24.0-cp311-cp311-win_amd64.whl 0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646 numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab numpy-1.24.0-cp38-cp38-win32.whl d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1 numpy-1.24.0-cp38-cp38-win_amd64.whl ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl 12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1 numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc numpy-1.24.0-cp39-cp39-win32.whl 667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e numpy-1.24.0-cp39-cp39-win_amd64.whl 4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853 numpy-1.24.0.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.



This PR has been generated by Mend Renovate. View repository job log here.

codecov-commenter commented 1 year ago

Codecov Report

Base: 86.91% // Head: 86.95% // Increases project coverage by +0.04% :tada:

Coverage data is based on head (f2a4f35) compared to base (9cdc955). Patch coverage: 100.00% of modified lines in pull request are covered.

Additional details and impacted files ```diff @@ Coverage Diff @@ ## main #109 +/- ## ========================================== + Coverage 86.91% 86.95% +0.04% ========================================== Files 38 41 +3 Lines 1146 1150 +4 ========================================== + Hits 996 1000 +4 Misses 150 150 ``` | [Impacted Files](https://codecov.io/gh/qnbhd/deployme/pull/109?src=pr&el=tree&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin) | Coverage Δ | | |---|---|---| | [deployme/\_\_init\_\_.py](https://codecov.io/gh/qnbhd/deployme/pull/109/diff?src=pr&el=tree&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin#diff-ZGVwbG95bWUvX19pbml0X18ucHk=) | `100.00% <100.00%> (ø)` | | | [deployme/contrib/\_\_init\_\_.py](https://codecov.io/gh/qnbhd/deployme/pull/109/diff?src=pr&el=tree&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin#diff-ZGVwbG95bWUvY29udHJpYi9fX2luaXRfXy5weQ==) | `100.00% <0.00%> (ø)` | | | [deployme/utils/\_\_init\_\_.py](https://codecov.io/gh/qnbhd/deployme/pull/109/diff?src=pr&el=tree&utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin#diff-ZGVwbG95bWUvdXRpbHMvX19pbml0X18ucHk=) | `100.00% <0.00%> (ø)` | | Help us with your feedback. Take ten seconds to tell us [how you rate us](https://about.codecov.io/nps?utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin). Have a feature suggestion? [Share it here.](https://app.codecov.io/gh/feedback/?utm_medium=referral&utm_source=github&utm_content=comment&utm_campaign=pr+comments&utm_term=Konstantin+Templin)

:umbrella: View full report at Codecov.
:loudspeaker: Do you have feedback about the report comment? Let us know in this issue.