quanted / qed

Python, JavaScript, C# and Fortran code for hosting EPA web applications and data/model services. Consult the wiki for details: https://github.com/quanted/qed/wiki Served publicly at:
https://qedinternal.edap-cluster.com/
13 stars 0 forks source link

Scheduled weekly dependency update for week 45 #120

Closed pyup-bot closed 7 years ago

pyup-bot commented 7 years ago

Updates

Here's a list of all the updates bundled in this pull request. I've added some links to make it easier for you to find all the information you need.

coverage 4.4.1 » 4.4.2 PyPI | Changelog | Repo
django 1.11.6 » 1.11.7 PyPI | Changelog | Homepage
django-crispy-forms 1.6.1 » 1.7.0 PyPI | Changelog | Repo
earthengine-api 0.1.125 » 0.1.127 PyPI | Homepage
flake8 3.4.1 » 3.5.0 PyPI | Changelog | Repo
nose2 0.6.5 » 0.7.0 PyPI | Repo
pandas 0.20.3 » 0.21.0 PyPI | Changelog | Homepage
psycopg2 2.7.3.1 » 2.7.3.2 PyPI | Changelog | Homepage
pytz 2017.2 » 2017.3 PyPI | Homepage | Docs
rollbar 0.13.13 » 0.13.17 PyPI | Changelog | Repo
scipy 0.19.1 » 1.0.0 PyPI | Changelog | Repo | Homepage
selenium 3.6.0 » 3.7.0 PyPI | Changelog | Repo
Sphinx 1.6.4 » 1.6.5 PyPI | Changelog | Homepage

Changelogs

coverage 4.4.1 -> 4.4.2

4.4.2


  • Support for Python 3.7. In some cases, class and module docstrings are no longer counted in statement totals, which could slightly change your total results.

  • Specifying both --source and --include no longer silently ignores the include setting, instead it displays a warning. Thanks, Loïc Dachary. Closes issue 265 and issue 101.

  • Fixed a race condition when saving data and multiple threads are tracing (issue 581_). It could produce a "dictionary changed size during iteration" RuntimeError. I believe this mostly but not entirely fixes the race condition. A true fix would likely be too expensive. Thanks, Peter Baughman for the debugging, and Olivier Grisel for the fix with tests.

  • Configuration values which are file paths will now apply tilde-expansion, closing issue 589_.

  • Now secondary config files like tox.ini and setup.cfg can be specified explicitly, and prefixed sections like [coverage:run] will be read. Fixes issue 588_.

  • Be more flexible about the command name displayed by help, fixing issue 600_. Thanks, Ben Finney.

.. _issue 101: https://bitbucket.org/ned/coveragepy/issues/101/settings-under-report-affect-running .. _issue 581: https://bitbucket.org/ned/coveragepy/issues/581/race-condition-when-saving-data-under .. _issue 588: https://bitbucket.org/ned/coveragepy/issues/588/using-rcfile-path-to-toxini-uses-run .. _issue 589: https://bitbucket.org/ned/coveragepy/issues/589/allow-expansion-in-coveragerc .. _issue 600: https://bitbucket.org/ned/coveragepy/issues/600/get-program-name-from-command-line-when

.. _changes_441:

django 1.11.6 -> 1.11.7

1.11.7

===========================

November 1, 2017

Django 1.11.7 fixes several bugs in 1.11.6.

Bugfixes

  • Prevented cache.get_or_set() from caching None if the default argument is a callable that returns None (:ticket:28601).

  • Fixed the Basque DATE_FORMAT string (:ticket:28710).

  • Made QuerySet.reverse() affect nulls_first and nulls_last (:ticket:28722).

  • Fixed unquoted table names in Subquery SQL when using OuterRef (:ticket:28689).

===========================

django-crispy-forms 1.6.1 -> 1.7.0

1.7.0

  • Fixes compatibility with Django 2.0
  • Various other fixes.

See 1.7 Milestone for full issue list.

flake8 3.4.1 -> 3.5.0

3.5.0


You can view the 3.5.0 milestone_ on GitLab for more details.

New Dependency Information


- Allow for PyFlakes 1.6.0 (See also `GitLab359`_)

- Start using new PyCodestyle checks for bare excepts and ambiguous identifier
 (See also `GitLab361`_)

Features
  • Print out information about configuring VCS hooks (See also GitLab335_)

  • Allow users to develop plugins "local" to a repository without using setuptools. See our documentation on local plugins for more information. (See also GitLab357_)

Bugs Fixed



- Catch and helpfully report ``UnicodeDecodeError``\ s when parsing
 configuration files. (See also `GitLab358`_)

.. all links
.. _3.5.0 milestone:
   https://gitlab.com/pycqa/flake8/milestones/20

.. issue links
.. _GitLab335:
   https://gitlab.com/pycqa/flake8/issues/335
.. _GitLab357:
   https://gitlab.com/pycqa/flake8/issues/357
.. _GitLab358:
   https://gitlab.com/pycqa/flake8/issues/358
.. _GitLab359:
   https://gitlab.com/pycqa/flake8/issues/359
.. _GitLab361:
   https://gitlab.com/pycqa/flake8/issues/361

.. merge request links

pandas 0.20.3 -> 0.21.0

0.21.0


This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

  • Integration with Apache Parquet <https://parquet.apache.org/>__, including a new top-level :func:read_parquet function and :meth:DataFrame.to_parquet method, see :ref:here <whatsnew_0210.enhancements.parquet>.
  • New user-facing :class:pandas.api.types.CategoricalDtype for specifying categoricals independent of the data, see :ref:here <whatsnew_0210.enhancements.categorical_dtype>.
  • The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on whether bottleneck <http://berkeleyanalytics.com/bottleneck>__ is installed, see :ref:here <whatsnew_0210.api_breaking.bottleneck>.
  • Compatibility fixes for pypy, see :ref:here <whatsnew_0210.pypy>.
  • Additions to the drop, reindex and rename API to make them more consistent, see :ref:here <whatsnew_0210.enhancements.drop_api>.
  • Addition of the new methods DataFrame.infer_objects (see :ref:here <whatsnew_0210.enhancements.infer_objects>) and GroupBy.pipe (see :ref:here <whatsnew_0210.enhancements.GroupBy_pipe>).
  • Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError in a future version, see :ref:here <whatsnew_0210.api_breaking.loc>.

Check the :ref:API Changes <whatsnew_0210.api_breaking> and :ref:deprecations <whatsnew_0210.deprecations> before updating.

.. contents:: What's new in v0.21.0 :local: :backlinks: none :depth: 2

.. _whatsnew_0210.enhancements:

New features


.. _whatsnew_0210.enhancements.parquet:

Integration with Apache Parquet file format
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` and :func:`DataFrame.to_parquet` method, see :ref:`here <io.parquet>` (:issue:`15838`, :issue:`17438`).

`Apache Parquet <https://parquet.apache.org/>`__ provides a cross-language, binary file format for reading and writing data frames efficiently.
Parquet is designed to faithfully serialize and de-serialize ``DataFrame`` s, supporting all of the pandas
dtypes, including extension dtypes such as datetime with timezones.

This functionality depends on either the `pyarrow <http://arrow.apache.org/docs/python/>`__ or `fastparquet <https://fastparquet.readthedocs.io/en/latest/>`__ library.
For more details, see see :ref:`the IO docs on Parquet <io.parquet>`.

.. _whatsnew_0210.enhancements.infer_objects:

``infer_objects`` type conversion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :meth:`DataFrame.infer_objects` and :meth:`Series.infer_objects`
methods have been added to perform dtype inference on object columns, replacing
some of the functionality of the deprecated ``convert_objects``
method. See the documentation :ref:`here <basics.object_conversion>`
for more details. (:issue:`11221`)

This method only performs soft conversions on object columns, converting Python objects
to native types, but not any coercive conversions. For example:

.. ipython:: python

  df = pd.DataFrame({'A': [1, 2, 3],
                     'B': np.array([1, 2, 3], dtype='object'),
                     'C': ['1', '2', '3']})
  df.dtypes
  df.infer_objects().dtypes

Note that column ``'C'`` was not converted - only scalar numeric types
will be converted to a new type.  Other types of conversion should be accomplished
using the :func:`to_numeric` function (or :func:`to_datetime`, :func:`to_timedelta`).

.. ipython:: python

  df = df.infer_objects()
  df['C'] = pd.to_numeric(df['C'], errors='coerce')
  df.dtypes

.. _whatsnew_0210.enhancements.attribute_access:

Improved warnings when attempting to create columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

New users are often puzzled by the relationship between column operations and
attribute access on ``DataFrame`` instances (:issue:`7175`). One specific
instance of this confusion is attempting to create a new column by setting an
attribute on the ``DataFrame``:

.. code-block:: ipython

  In[1]: df = pd.DataFrame({'one': [1., 2., 3.]})
  In[2]: df.two = [4, 5, 6]

This does not raise any obvious exceptions, but also does not create a new column:

.. code-block:: ipython

  In[3]: df
  Out[3]:
      one
  0  1.0
  1  2.0
  2  3.0

Setting a list-like data structure into a new attribute now raises a ``UserWarning`` about the potential for unexpected behavior. See :ref:`Attribute Access <indexing.attribute_access>`.

.. _whatsnew_0210.enhancements.drop_api:

``drop`` now also accepts index/columns keywords
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :meth:`~DataFrame.drop` method has gained ``index``/``columns`` keywords as an
alternative to specifying the ``axis``. This is similar to the behavior of ``reindex``
(:issue:`12392`).

For example:

.. ipython:: python

   df = pd.DataFrame(np.arange(8).reshape(2,4),
                     columns=['A', 'B', 'C', 'D'])
   df
   df.drop(['B', 'C'], axis=1)
    the following is now equivalent
   df.drop(columns=['B', 'C'])

.. _whatsnew_0210.enhancements.rename_reindex_axis:

``rename``, ``reindex`` now also accept axis keyword
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :meth:`DataFrame.rename` and :meth:`DataFrame.reindex` methods have gained
the ``axis`` keyword to specify the axis to target with the operation
(:issue:`12392`).

Here's ``rename``:

.. ipython:: python

  df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
  df.rename(str.lower, axis='columns')
  df.rename(id, axis='index')

And ``reindex``:

.. ipython:: python

  df.reindex(['A', 'B', 'C'], axis='columns')
  df.reindex([0, 1, 3], axis='index')

The "index, columns" style continues to work as before.

.. ipython:: python

  df.rename(index=id, columns=str.lower)
  df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])

We *highly* encourage using named arguments to avoid confusion when using either
style.

.. _whatsnew_0210.enhancements.categorical_dtype:

``CategoricalDtype`` for specifying categoricals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`pandas.api.types.CategoricalDtype` has been added to the public API and
expanded to include the ``categories`` and ``ordered`` attributes. A
``CategoricalDtype`` can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example,
when converting string data to a ``Categorical`` (:issue:`14711`,
:issue:`15078`, :issue:`16015`, :issue:`17643`):

.. ipython:: python

  from pandas.api.types import CategoricalDtype

  s = pd.Series(['a', 'b', 'c', 'a'])   strings
  dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)
  s.astype(dtype)

One place that deserves special mention is in :meth:`read_csv`. Previously, with
``dtype={'col': 'category'}``, the returned values and categories would always
be strings.

.. ipython:: python
  :suppress:

  from pandas.compat import StringIO

.. ipython:: python

  data = 'A,B\na,1\nb,2\nc,3'
  pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories

Notice the "object" dtype.

With a ``CategoricalDtype`` of all numerics, datetimes, or
timedeltas, we can automatically convert to the correct type

.. ipython:: python

  dtype = {'B': CategoricalDtype([1, 2, 3])}
  pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories

The values have been correctly interpreted as integers.

The ``.dtype`` property of a ``Categorical``, ``CategoricalIndex`` or a
``Series`` with categorical type will now return an instance of
``CategoricalDtype``. While the repr has changed, ``str(CategoricalDtype())`` is
still the string ``'category'``. We'll take this moment to remind users that the
*preferred* way to detect categorical data is to use
:func:`pandas.api.types.is_categorical_dtype`, and not ``str(dtype) == 'category'``.

See the :ref:`CategoricalDtype docs <categorical.categoricaldtype>` for more.

.. _whatsnew_0210.enhancements.GroupBy_pipe:

``GroupBy`` objects now have a ``pipe`` method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``GroupBy`` objects now have a ``pipe`` method, similar to the one on
``DataFrame`` and ``Series``, that allow for functions that take a
``GroupBy`` to be composed in a clean, readable syntax. (:issue:`17871`)

For a concrete example on combining ``.groupby`` and ``.pipe`` , imagine having a
DataFrame with columns for stores, products, revenue and sold quantity. We'd like to
do a groupwise calculation of *prices* (i.e. revenue/quantity) per store and per product.
We could do this in a multi-step operation, but expressing it in terms of piping can make the
code more readable.

First we set the data:

.. ipython:: python

  import numpy as np
  n = 1000
  df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
                     'Product': np.random.choice(['Product_1', 'Product_2', 'Product_3'], n),
                     'Revenue': (np.random.random(n)*50+10).round(2),
                     'Quantity': np.random.randint(1, 10, size=n)})
  df.head(2)

Now, to find prices per store/product, we can simply do:

.. ipython:: python

  (df.groupby(['Store', 'Product'])
     .pipe(lambda grp: grp.Revenue.sum()/grp.Quantity.sum())
     .unstack().round(2))

See the :ref:`documentation <groupby.pipe>` for more.

.. _whatsnew_0210.enhancements.reanme_categories:

``Categorical.rename_categories`` accepts a dict-like
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`~Series.cat.rename_categories` now accepts a dict-like argument for
``new_categories``. The previous categories are looked up in the dictionary's
keys and replaced if found. The behavior of missing and extra keys is the same
as in :meth:`DataFrame.rename`.

.. ipython:: python

  c = pd.Categorical(['a', 'a', 'b'])
  c.rename_categories({"a": "eh", "b": "bee"})

.. warning::

   To assist with upgrading pandas, ``rename_categories`` treats ``Series`` as
   list-like. Typically, Series are considered to be dict-like (e.g. in
   ``.rename``, ``.map``). In a future version of pandas ``rename_categories``
   will change to treat them as dict-like. Follow the warning message's
   recommendations for writing future-proof code.

   .. code-block:: ipython

       In [33]: c.rename_categories(pd.Series([0, 1], index=['a', 'c']))
       FutureWarning: Treating Series 'new_categories' as a list-like and using the values.
       In a future version, 'rename_categories' will treat Series like a dictionary.
       For dict-like, use 'new_categories.to_dict()'
       For list-like, use 'new_categories.values'.
       Out[33]:
       [0, 0, 1]
       Categories (2, int64): [0, 1]

.. _whatsnew_0210.enhancements.other:

Other Enhancements
^^^^^^^^^^^^^^^^^^

New functions or methods
""""""""""""""""""""""""

- :meth:`~pandas.core.resample.Resampler.nearest` is added to support nearest-neighbor upsampling (:issue:`17496`).
- :class:`~pandas.Index` has added support for a ``to_frame`` method (:issue:`15230`).

New keywords
""""""""""""

- Added a ``skipna`` parameter to :func:`~pandas.api.types.infer_dtype` to
 support type inference in the presence of missing values (:issue:`17059`).
- :func:`Series.to_dict` and :func:`DataFrame.to_dict` now support an ``into`` keyword which allows you to specify the ``collections.Mapping`` subclass that you would like returned.  The default is ``dict``, which is backwards compatible. (:issue:`16122`)
- :func:`Series.set_axis` and :func:`DataFrame.set_axis` now support the ``inplace`` parameter. (:issue:`14636`)
- :func:`Series.to_pickle` and :func:`DataFrame.to_pickle` have gained a ``protocol`` parameter (:issue:`16252`). By default, this parameter is set to `HIGHEST_PROTOCOL <https://docs.python.org/3/library/pickle.htmldata-stream-format>`__
- :func:`read_feather` has gained the ``nthreads`` parameter for multi-threaded operations (:issue:`16359`)
- :func:`DataFrame.clip()` and :func:`Series.clip()` have gained an ``inplace`` argument. (:issue:`15388`)
- :func:`crosstab` has gained a ``margins_name`` parameter to define the name of the row / column that will contain the totals when ``margins=True``. (:issue:`15972`)
- :func:`read_json` now accepts a ``chunksize`` parameter that can be used when ``lines=True``. If ``chunksize`` is passed, read_json now returns an iterator which reads in ``chunksize`` lines with each iteration. (:issue:`17048`)
- :func:`read_json` and :func:`~DataFrame.to_json` now accept a ``compression`` argument which allows them to transparently handle compressed files. (:issue:`17798`)

Various enhancements
""""""""""""""""""""

- Improved the import time of pandas by about 2.25x.  (:issue:`16764`)
- Support for `PEP 519 -- Adding a file system path protocol
 <https://www.python.org/dev/peps/pep-0519/>`_ on most readers (e.g.
 :func:`read_csv`) and writers (e.g. :meth:`DataFrame.to_csv`) (:issue:`13823`).
- Added a ``__fspath__`` method to ``pd.HDFStore``, ``pd.ExcelFile``,
 and ``pd.ExcelWriter`` to work properly with the file system path protocol (:issue:`13823`).
- The ``validate`` argument for :func:`merge` now checks whether a merge is one-to-one, one-to-many, many-to-one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type ``MergeError`` will be raised. For more, see :ref:`here <merging.validation>` (:issue:`16270`)
- Added support for `PEP 518 <https://www.python.org/dev/peps/pep-0518/>`_ (``pyproject.toml``) to the build system (:issue:`16745`)
- :func:`RangeIndex.append` now returns a ``RangeIndex`` object when possible (:issue:`16212`)
- :func:`Series.rename_axis` and :func:`DataFrame.rename_axis` with ``inplace=True`` now return ``None`` while renaming the axis inplace. (:issue:`15704`)
- :func:`api.types.infer_dtype` now infers decimals. (:issue:`15690`)
- :func:`DataFrame.select_dtypes` now accepts scalar values for include/exclude as well as list-like. (:issue:`16855`)
- :func:`date_range` now accepts 'YS' in addition to 'AS' as an alias for start of year. (:issue:`9313`)
- :func:`date_range` now accepts 'Y' in addition to 'A' as an alias for end of year. (:issue:`9313`)
- :func:`DataFrame.add_prefix` and :func:`DataFrame.add_suffix` now accept strings containing the '%' character. (:issue:`17151`)
- Read/write methods that infer compression (:func:`read_csv`, :func:`read_table`, :func:`read_pickle`, and :meth:`~DataFrame.to_pickle`) can now infer from path-like objects, such as ``pathlib.Path``. (:issue:`17206`)
- :func:`read_sas` now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT files. (:issue:`15871`)
- :func:`DataFrame.items` and :func:`Series.items` are now present in both Python 2 and 3 and is lazy in all cases. (:issue:`13918`, :issue:`17213`)
- :meth:`pandas.io.formats.style.Styler.where` has been implemented as a convenience for :meth:`pandas.io.formats.style.Styler.applymap`. (:issue:`17474`)
- :func:`MultiIndex.is_monotonic_decreasing` has been implemented.  Previously returned ``False`` in all cases. (:issue:`16554`)
- :func:`read_excel` raises ``ImportError`` with a better message if ``xlrd`` is not installed. (:issue:`17613`)
- :meth:`DataFrame.assign` will preserve the original order of ``**kwargs`` for Python 3.6+ users instead of sorting the column names. (:issue:`14207`)
- :func:`Series.reindex`, :func:`DataFrame.reindex`, :func:`Index.get_indexer` now support list-like argument for ``tolerance``. (:issue:`17367`)

.. _whatsnew_0210.api_breaking:

Backwards incompatible API changes

.. _whatsnew_0210.api_breaking.deps:

Dependencies have increased minimum versions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We have updated our minimum supported versions of dependencies (:issue:15206, :issue:15543, :issue:15214). If installed, we now require:

+--------------+-----------------+----------+ | Package | Minimum Version | Required | +==============+=================+==========+ | Numpy | 1.9.0 | X | +--------------+-----------------+----------+ | Matplotlib | 1.4.3 | | +--------------+-----------------+----------+ | Scipy | 0.14.0 | | +--------------+-----------------+----------+ | Bottleneck | 1.0.0 | | +--------------+-----------------+----------+

Additionally, support has been dropped for Python 3.4 (:issue:15251).

.. _whatsnew_0210.api_breaking.bottleneck:

Sum/Prod of all-NaN Series/DataFrames is now consistently NaN ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The behavior of sum and prod on all-NaN Series/DataFrames no longer depends on whether bottleneck <http://berkeleyanalytics.com/bottleneck>__ is installed. (:issue:9422, :issue:15507).

Calling sum or prod on an empty or all-NaN Series, or columns of a DataFrame, will result in NaN. See the :ref:docs <missing_data.numeric_sum>.

.. ipython:: python

s = Series([np.nan])

Previously NO bottleneck

.. code-block:: ipython

In [2]: s.sum() Out[2]: np.nan

Previously WITH bottleneck

.. code-block:: ipython

In [2]: s.sum() Out[2]: 0.0

New Behavior, without regard to the bottleneck installation.

.. ipython:: python

s.sum()

Note that this also changes the sum of an empty Series

Previously regardless of bottlenck

.. code-block:: ipython

In [1]: pd.Series([]).sum() Out[1]: 0

.. ipython:: python

pd.Series([]).sum()

.. _whatsnew_0210.api_breaking.loc:

Indexing with a list with missing labels is Deprecated ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning NaN for missing labels. This will now show a FutureWarning. In the future this will raise a KeyError (:issue:15747). This warning will trigger on a DataFrame or a Series for using .loc[] or [[]] when passing a list-of-labels with at least 1 missing label. See the :ref:deprecation docs <indexing.deprecate_loc_reindex_listlike>.

.. ipython:: python

s = pd.Series([1, 2, 3]) s

Previous Behavior

.. code-block:: ipython

In [4]: s.loc[[1, 2, 3]] Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64

Current Behavior

.. code-block:: ipython

In [4]: s.loc[[1, 2, 3]] Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative.

See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.htmldeprecate-loc-reindex-listlike

Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64

The idiomatic way to achieve selecting potentially not-found elements is via .reindex()

.. ipython:: python

s.reindex([1, 2, 3])

Selection with all keys found is unchanged.

.. ipython:: python

s.loc[[1, 2]]

.. _whatsnew_0210.api.na_changes:

NA naming Changes ^^^^^^^^^^^^^^^^^

In order to promote more consistency among the pandas API, we have added additional top-level functions :func:isna and :func:notna that are aliases for :func:isnull and :func:notnull. The naming scheme is now more consistent with methods like .dropna() and .fillna(). Furthermore in all cases where .isnull() and .notnull() methods are defined, these have additional methods named .isna() and .notna(), these are included for classes Categorical, Index, Series, and DataFrame. (:issue:15001).

The configuration option pd.options.mode.use_inf_as_null is deprecated, and pd.options.mode.use_inf_as_na is added as a replacement.

.. _whatsnew_0210.api_breaking.iteration_scalars:

Iteration of Series/Index will now return Python scalars ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, when using certain iteration methods for a Series with dtype int or float, you would receive a numpy scalar, e.g. a np.int64, rather than a Python int. Issue (:issue:10904) corrected this for Series.tolist() and list(Series). This change makes all iteration methods consistent, in particular, for __iter__() and .map(); note that this only affects int/float dtypes. (:issue:13236, :issue:13258, :issue:14216).

.. ipython:: python

s = pd.Series([1, 2, 3]) s

Previously:

.. code-block:: ipython

In [2]: type(list(s)[0]) Out[2]: numpy.int64

New Behaviour:

.. ipython:: python

type(list(s)[0])

Furthermore this will now correctly box the results of iteration for :func:DataFrame.to_dict as well.

.. ipython:: python

d = {'a':[1], 'b':['b']} df = pd.DataFrame(d)

Previously:

.. code-block:: ipython

In [8]: type(df.to_dict()['a'][0]) Out[8]: numpy.int64

New Behaviour:

.. ipython:: python

type(df.to_dict()['a'][0])

.. _whatsnew_0210.api_breaking.loc_with_index:

Indexing with a Boolean Index ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously when passing a boolean Index to .loc, if the index of the Series/DataFrame had boolean labels, you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection (where True selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to act like a boolean numpy array indexer. (:issue:17738)

Previous Behavior:

.. ipython:: python

s = pd.Series([1, 2, 3], index=[False, True, False]) s

.. code-block:: ipython

In [59]: s.loc[pd.Index([True, False, True])] Out[59]: True 2 False 1 False 3 True 2 dtype: int64

Current Behavior

.. ipython:: python

s.loc[pd.Index([True, False, True])]

Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a KeyError. This will now be treated as a boolean indexer.

Previously Behavior:

.. ipython:: python

s = pd.Series([1,2,3], index=['a', 'b', 'c']) s

.. code-block:: ipython

In [39]: s.loc[pd.Index([True, False, True])] KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"

Current Behavior

.. ipython:: python

s.loc[pd.Index([True, False, True])]

.. _whatsnew_0210.api_breaking.period_index_resampling:

PeriodIndex resampling ^^^^^^^^^^^^^^^^^^^^^^^^^^

In previous versions of pandas, resampling a Series/DataFrame indexed by a PeriodIndex returned a DatetimeIndex in some cases (:issue:12884). Resampling to a multiplied frequency now returns a PeriodIndex (:issue:15944). As a minor enhancement, resampling a PeriodIndex can now handle NaT values (:issue:13224)

Previous Behavior:

.. code-block:: ipython

In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')

In [2]: s = pd.Series(np.arange(12), index=pi)

In [3]: resampled = s.resample('2Q').mean()

In [4]: resampled Out[4]: 2017-03-31 1.0 2017-09-30 5.5 2018-03-31 10.0 Freq: 2Q-DEC, dtype: float64

In [5]: resampled.index Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype='datetime64[ns]', freq='2Q-DEC')

New Behavior:

.. ipython:: python

pi = pd.period_range('2017-01', periods=12, freq='M')

s = pd.Series(np.arange(12), index=pi)

resampled = s.resample('2Q').mean()

resampled

resampled.index

Upsampling and calling .ohlc() previously returned a Series, basically identical to calling .asfreq(). OHLC upsampling now returns a DataFrame with columns open, high, low and close (:issue:13083). This is consistent with downsampling and DatetimeIndex behavior.

Previous Behavior:

.. code-block:: ipython

In [1]: pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)

In [2]: s = pd.Series(np.arange(10), index=pi)

In [3]: s.resample('H').ohlc() Out[3]: 2000-01-01 00:00 0.0 ... 2000-01-10 23:00 NaN Freq: H, Length: 240, dtype: float64

In [4]: s.resample('M').ohlc() Out[4]: open high low close 2000-01 0 9 0 9

New Behavior:

.. ipython:: python

pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)

s = pd.Series(np.arange(10), index=pi)

s.resample('H').ohlc()

s.resample('M').ohlc()

.. _whatsnew_0210.api_breaking.pandas_eval:

Improved error handling during item assignment in pd.eval ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:eval will now raise a ValueError when item assignment malfunctions, or inplace operations are specified, but there is no item assignment in the expression (:issue:16732)

.. ipython:: python

arr = np.array([1, 2, 3])

Previously, if you attempted the following expression, you would get a not very helpful error message:

.. code-block:: ipython

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True) ... IndexError: only integers, slices (:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices

This is a very long way of saying numpy arrays don't support string-item indexing. With this change, the error message is now this:

.. code-block:: python

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True) ... ValueError: Cannot assign expression output to target

It also used to be possible to evaluate expressions inplace, even if there was no item assignment:

.. code-block:: ipython

In [4]: pd.eval("1 + 2", target=arr, inplace=True) Out[4]: 3

However, this input does not make much sense because the output is not being assigned to the target. Now, a ValueError will be raised when such an input is passed in:

.. code-block:: ipython

In [4]: pd.eval("1 + 2", target=arr, inplace=True) ... ValueError: Cannot operate inplace if there is no assignment

.. _whatsnew_0210.api_breaking.dtype_conversions:

Dtype Conversions ^^^^^^^^^^^^^^^^^

Previously assignments, .where() and .fillna() with a bool assignment, would coerce to same the type (e.g. int / float), or raise for datetimelikes. These will now preserve the bools with object dtypes. (:issue:16821).

.. ipython:: python

s = Series([1, 2, 3])

.. code-block:: python

In [5]: s[1] = True

In [6]: s Out[6]: 0 1 1 1 2 3 dtype: int64

New Behavior

.. ipython:: python

s[1] = True s

Previously, as assignment to a datetimelike with a non-datetimelike would coerce the non-datetime-like item being assigned (:issue:14145).

.. ipython:: python

s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])

.. code-block:: python

In [1]: s[1] = 1

In [2]: s Out[2]: 0 2011-01-01 00:00:00.000000000 1 1970-01-01 00:00:00.000000001 dtype: datetime64[ns]

These now coerce to object dtype.

.. ipython:: python

s[1] = 1 s

  • Inconsistent behavior in .where() with datetimelikes which would raise rather than coerce to object (:issue:16402)
  • Bug in assignment against int64 data with np.ndarray with float64 dtype may keep int64 dtype (:issue:14001)

.. _whatsnew_210.api.multiindex_single:

MultiIndex Constructor with a Single Level ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The MultiIndex constructors no longer squeezes a MultiIndex with all length-one levels down to a regular Index. This affects all the MultiIndex constructors. (:issue:17178)

Previous behavior:

.. code-block:: ipython

In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)]) Out[2]: Index(['a', 'b'], dtype='object')

Length 1 levels are no longer special-cased. They behave exactly as if you had length 2+ levels, so a :class:MultiIndex is always returned from all of the MultiIndex constructors:

.. ipython:: python

pd.MultiIndex.from_tuples([('a',), ('b',)])

.. _whatsnew_0210.api.utc_localization_with_series:

UTC Localization with Series ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, :func:to_datetime did not localize datetime Series data when utc=True was passed. Now, :func:to_datetime will correctly localize Series with a datetime64[ns, UTC] dtype to be consistent with how list-like and Index data are handled. (:issue:6415).

Previous Behavior

.. ipython:: python

s = Series(['20130101 00:00:00'] * 3)

.. code-block:: ipython

In [12]: pd.to_datetime(s, utc=True) Out[12]: 0 2013-01-01 1 2013-01-01 2 2013-01-01 dtype: datetime64[ns]

New Behavior

.. ipython:: python

pd.to_datetime(s, utc=True)

Additionally, DataFrames with datetime columns that were parsed by :func:read_sql_table and :func:read_sql_query will also be localized to UTC only if the original SQL columns were timezone aware datetime columns.

.. _whatsnew_0210.api.consistency_of_range_functions:

Consistency of Range Functions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In previous versions, there were some inconsistencies between the various range functions: :func:date_range, :func:bdate_range, :func:period_range, :func:timedelta_range, and :func:interval_range. (:issue:17471).

One of the inconsistent behaviors occurred when the start, end and period parameters were all specified, potentially leading to ambiguous ranges. When all three parameters were passed, interval_range ignored the period parameter, period_range ignored the end parameter, and the other range functions raised. To promote consistency among the range functions, and avoid potentially ambiguous ranges, interval_range and period_range will now raise when all three parameters are passed.

Previous Behavior:

.. code-block:: ipython

In [2]: pd.interval_range(start=0, end=4, periods=6) Out[2]: IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]')

In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q') Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'], dtype='period[Q-DEC]', freq='Q-DEC')

New Behavior:

.. code-block:: ipython

In [2]: pd.interval_range(start=0, end=4, periods=6)

ValueError: Of the three parameters: start, end, and periods, exactly two must be specified

In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')

ValueError: Of the three parameters: start, end, and periods, exactly two must be specified

Additionally, the endpoint parameter end was not included in the intervals produced by interval_range. However, all other range functions include end in their output. To promote consistency among the range functions, interval_range will now include end as the right endpoint of the final interval, except if freq is specified in a way which skips end.

Previous Behavior:

.. code-block:: ipython

In [4]: pd.interval_range(start=0, end=4) Out[4]: IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]')

New Behavior:

.. ipython:: python

pd.interval_range(start=0, end=4)

.. _whatsnew_0210.api:

Other API Changes ^^^^^^^^^^^^^^^^^

  • The Categorical constructor no longer accepts a scalar for the categories keyword. (:issue:16022)
  • Accessing a non-existent attribute on a closed :class:~pandas.HDFStore will now raise an AttributeError rather than a ClosedFileError (:issue:16301)
  • :func:read_csv now issues a UserWarning if the names parameter contains duplicates (:issue:17095)
  • :func:read_csv now treats 'null' and 'n/a' strings as missing values by default (:issue:16471, :issue:16078)
  • :class:pandas.HDFStore's string representation is now faster and less detailed. For the previous behavior, use pandas.HDFStore.info(). (:issue:16503).
  • Compression defaults in HDF stores now follow pytables standards. Default is no compression and if complib is missing and complevel > 0 zlib is used (:issue:15943)
  • Index.get_indexer_non_unique() now returns a ndarray indexer rather than an Index; this is consistent with Index.get_indexer() (:issue:16819)
  • Removed the slow decorator from pandas.util.testing, which caused issues for some downstream packages' test suites. Use pytest.mark.slow instead, which achieves the same thing (:issue:16850)
  • Moved definition of MergeError to the pandas.errors module.
  • The signature of :func:Series.set_axis and :func:DataFrame.set_axis has been changed from set_axis(axis, labels) to set_axis(labels, axis=0), for consistency with the rest of the API. The old signature is deprecated and will show a FutureWarning (:issue:14636)
  • :func:Series.argmin and :func:Series.argmax will now raise a TypeError when used with object dtypes, instead of a ValueError (:issue:13595)
  • :class:Period is now immutable, and will now raise an AttributeError when a user tries to assign a new value to the ordinal or freq attributes (:issue:17116).
  • :func:to_datetime when passed a tz-aware origin= kwarg will now raise a more informative ValueError rather than a TypeError (:issue:16842)
  • :func:to_datetime now raises a ValueError when format includes %W or %U without also including day of the week and calendar year (:issue:16774)
  • Renamed non-functional index to index_col in :func:read_stata to improve API consistency (:issue:16342)
  • Bug in :func:DataFrame.drop caused boolean labels False and True to be treated as labels 0 and 1 respectively when dropping indices from a numeric index. This will now raise a ValueError (:issue:16877)
  • Restricted DateOffset keyword arguments. Previously, DateOffset subclasses allowed arbitrary keyword arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (:issue:17176).
  • Pandas no longer registers matplotlib converters on import. The converters will be registered and used when the first plot is draw (:issue:17710)

.. _whatsnew_0210.deprecations:

Deprecations


- :meth:`DataFrame.from_csv` and :meth:`Series.from_csv` have been deprecated in favor of :func:`read_csv()` (:issue:`4191`)
- :func:`read_excel()` has deprecated ``sheetname`` in favor of ``sheet_name`` for consistency with ``.to_excel()`` (:issue:`10559`).
- :func:`read_excel()` has deprecated ``parse_cols`` in favor of ``usecols`` for consistency with :func:`read_csv` (:issue:`4988`)
- :func:`read_csv()` has deprecated the ``tupleize_cols`` argument. Column tuples will always be converted to a ``MultiIndex`` (:issue:`17060`)
- :meth:`DataFrame.to_csv` has deprecated the ``tupleize_cols`` argument. Multi-index columns will be always written as rows in the CSV file (:issue:`17060`)
- The ``convert`` parameter has been deprecated in the ``.take()`` method, as it was not being respected (:issue:`16948`)
- ``pd.options.html.border`` has been deprecated in favor of ``pd.options.display.html.border`` (:issue:`15793`).
- :func:`SeriesGroupBy.nth` has deprecated ``True`` in favor of ``'all'`` for its kwarg ``dropna`` (:issue:`11038`).
- :func:`DataFrame.as_blocks` is deprecated, as this is exposing the internal implementation (:issue:`17302`)
- ``pd.TimeGrouper`` is deprecated in favor of :class:`pandas.Grouper` (:issue:`16747`)
- ``cdate_range`` has been deprecated in favor of :func:`bdate_range`, which has gained ``weekmask`` and ``holidays`` parameters for building custom frequency date ranges. See the :ref:`documentation <timeseries.custom-freq-ranges>` for more details (:issue:`17596`)
- passing ``categories`` or ``ordered`` kwargs to :func:`Series.astype` is deprecated, in favor of passing a :ref:`CategoricalDtype <whatsnew_0210.enhancements.categorical_dtype>` (:issue:`17636`)
- ``.get_value`` and ``.set_value`` on ``Series``, ``DataFrame``, ``Panel``, ``SparseSeries``, and ``SparseDataFrame`` are deprecated in favor of using ``.iat[]`` or ``.at[]`` accessors (:issue:`15269`)
- Passing a non-existent column in ``.to_excel(..., columns=)`` is deprecated and will raise a ``KeyError`` in the future (:issue:`17295`)
- ``raise_on_error`` parameter to :func:`Series.where`, :func:`Series.mask`, :func:`DataFrame.where`, :func:`DataFrame.mask` is deprecated, in favor of ``errors=`` (:issue:`14968`)
- Using :meth:`DataFrame.rename_axis` and :meth:`Series.rename_axis` to alter index or column *labels* is now deprecated in favor of using ``.rename``. ``rename_axis`` may still be used to alter the name of the index or columns (:issue:`17833`).
- :meth:`~DataFrame.reindex_axis` has been deprecated in favor of :meth:`~DataFrame.reindex`. See :ref:`here <whatsnew_0210.enhancements.rename_reindex_axis>` for more (:issue:`17833`).

.. _whatsnew_0210.deprecations.select:

Series.select and DataFrame.select
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :meth:`Series.select` and :meth:`DataFrame.select` methods are deprecated in favor of using ``df.loc[labels.map(crit)]`` (:issue:`12401`)

.. ipython:: python

  df = DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])

.. code-block:: ipython

  In [3]: df.select(lambda x: x in ['bar', 'baz'])
  FutureWarning: select is deprecated and will be removed in a future release. You can use .loc[crit] as a replacement
  Out[3]:
       A
  bar  2
  baz  3

.. ipython:: python

  df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]

.. _whatsnew_0210.deprecations.argmin_min:

Series.argmax and Series.argmin
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The behavior of :func:`Series.argmax` and :func:`Series.argmin` have been deprecated in favor of :func:`Series.idxmax` and :func:`Series.idxmin`, respectively (:issue:`16830`).

For compatibility with NumPy arrays, ``pd.Series`` implements ``argmax`` and
``argmin``. Since pandas 0.13.0, ``argmax`` has been an alias for
:meth:`pandas.Series.idxmax`, and ``argmin`` has been an alias for
:meth:`pandas.Series.idxmin`. They return the *label* of the maximum or minimum,
rather than the *position*.

We've deprecated the current behavior of ``Series.argmax`` and
``Series.argmin``. Using either of these will emit a ``FutureWarning``. Use
:meth:`Series.idxmax` if you want the label of the maximum. Use
``Series.values.argmax()`` if you want the position of the maximum. Likewise for
the minimum. In a future release ``Series.argmax`` and ``Series.argmin`` will
return the position of the maximum or minimum.

.. _whatsnew_0210.prior_deprecations:

Removal of prior version deprecations/changes
  • :func:read_excel() has dropped the has_index_names parameter (:issue:10967)
  • The pd.options.display.height configuration has been dropped (:issue:3663)
  • The pd.options.display.line_width configuration has been dropped (:issue:2881)
  • The pd.options.display.mpl_style configuration has been dropped (:issue:12190)
  • Index has dropped the .sym_diff() method in favor of .symmetric_difference() (:issue:12591)
  • Categorical has dropped the .order() and .sort() methods in favor of .sort_values() (:issue:12882)
  • :func:eval and :func:DataFrame.eval have changed the default of inplace from None to False (:issue:11149)
  • The function get_offset_name has been dropped in favor of the .freqstr attribute for an offset (:issue:11834)
  • pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (:issue:17404).

.. _whatsnew_0210.performance:

Performance Improvements


- Improved performance of instantiating :class:`SparseDataFrame` (:issue:`16773`)
- :attr:`Series.dt` no longer performs frequency inference, yielding a large speedup when accessing the attribute (:issue:`17210`)
- Improved performance of :meth:`~Series.cat.set_categories` by not materializing the values (:issue:`17508`)
- :attr:`Timestamp.microsecond` no longer re-computes on attribute access (:issue:`17331`)
- Improved performance of the :class:`CategoricalIndex` for data that is already categorical dtype (:issue:`17513`)
- Improved performance of :meth:`RangeIndex.min` and :meth:`RangeIndex.max` by using ``RangeIndex`` properties to perform the computations (:issue:`17607`)

.. _whatsnew_0210.docs:

Documentation Changes
  • Several NaT method docstrings (e.g. :func:NaT.ctime) were incorrect (:issue:17327)
  • The documentation has had references to versions < v0.17 removed and cleaned up (:issue:17442, :issue:17442, :issue:17404 & :issue:17504)

.. _whatsnew_0210.bug_fixes:

Bug Fixes



Conversion
^^^^^^^^^^

- Bug in assignment against datetime-like data with ``int`` may incorrectly convert to datetime-like (:issue:`14145`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)
- Fixed the return type of ``IntervalIndex.is_non_overlapping_monotonic`` to be a Python ``bool`` for consistency with similar attributes/methods.  Previously returned a ``numpy.bool_``. (:issue:`17237`)
- Bug in ``IntervalIndex.is_non_overlapping_monotonic`` when intervals are closed on both sides and overlap at a point (:issue:`16560`)
- Bug in :func:`Series.fillna` returns frame when ``inplace=True`` and ``value`` is dict (:issue:`16156`)
- Bug in :attr:`Timestamp.weekday_name` returning a UTC-based weekday name when localized to a timezone (:issue:`17354`)
- Bug in ``Timestamp.replace`` when replacing ``tzinfo`` around DST changes (:issue:`15683`)
- Bug in ``Timedelta`` construction and arithmetic that would not propagate the ``Overflow`` exception (:issue:`17367`)
- Bug in :meth:`~DataFrame.astype` converting to object dtype when passed extension type classes (`DatetimeTZDtype``, ``CategoricalDtype``) rather than instances. Now a ``TypeError`` is raised when a class is passed (:issue:`17780`).
- Bug in :meth:`to_numeric` in which elements were not always being coerced to numeric when ``errors=&#39;coerce&#39;`` (:issue:`17007`, :issue:`17125`)
- Bug in ``DataFrame`` and ``Series`` constructors where ``range`` objects are converted to ``int32`` dtype on Windows instead of ``int64`` (:issue:`16804`)

Indexing
^^^^^^^^

- When called with a null slice (e.g. ``df.iloc[:]``), the ``.iloc`` and ``.loc`` indexers return a shallow copy of the original object. Previously they returned the original object. (:issue:`13873`).
- When called on an unsorted ``MultiIndex``, the ``loc`` indexer now will raise ``UnsortedIndexError`` only if proper slicing is used on non-sorted levels (:issue:`16734`).
- Fixes regression in 0.20.3 when indexing with a string on a ``TimedeltaIndex`` (:issue:`16896`).
- Fixed :func:`TimedeltaIndex.get_loc` handling of ``np.timedelta64`` inputs (:issue:`16909`).
- Fix :func:`MultiIndex.sort_index` ordering when ``ascending`` argument is a list, but not all levels are specified, or are in a different order (:issue:`16934`).
- Fixes bug where indexing with ``np.inf`` caused an ``OverflowError`` to be raised (:issue:`16957`)
- Bug in reindexing on an empty ``CategoricalIndex`` (:issue:`16770`)
- Fixes ``DataFrame.loc`` for setting with alignment and tz-aware ``DatetimeIndex`` (:issue:`16889`)
- Avoids ``IndexError`` when passing an Index or Series to ``.iloc`` with older numpy (:issue:`17193`)
- Allow unicode empty strings as placeholders in multilevel columns in Python 2 (:issue:`17099`)
- Bug in ``.iloc`` when used with inplace addition or assignment and an int indexer on a ``MultiIndex`` causing the wrong indexes to be read from and written to (:issue:`17148`)
- Bug in ``.isin()`` in which checking membership in empty ``Series`` objects raised an error (:issue:`16991`)
- Bug in ``CategoricalIndex`` reindexing in which specified indices containing duplicates were not being respected (:issue:`17323`)
- Bug in intersection of ``RangeIndex`` with negative step (:issue:`17296`)
- Bug in ``IntervalIndex`` where performing a scalar lookup fails for included right endpoints of non-overlapping monotonic decreasing indexes (:issue:`16417`, :issue:`17271`)
- Bug in :meth:`DataFrame.first_valid_index` and :meth:`DataFrame.last_valid_index` when no valid entry (:issue:`17400`)
- Bug in :func:`Series.rename` when called with a callable, incorrectly alters the name of the ``Series``, rather than the name of the ``Index``. (:issue:`17407`)
- Bug in :func:`String.str_get` raises ``IndexError`` instead of inserting NaNs when using a negative index. (:issue:`17704`)

I/O
^^^

- Bug in :func:`read_hdf` when reading a timezone aware index from ``fixed`` format HDFStore (:issue:`17618`)
- Bug in :func:`read_csv` in which columns were not being thoroughly de-duplicated (:issue:`17060`)
- Bug in :func:`read_csv` in which specified column names were not being thoroughly de-duplicated (:issue:`17095`)
- Bug in :func:`read_csv` in which non integer values for the header argument generated an unhelpful / unrelated error message (:issue:`16338`)
- Bug in :func:`read_csv` in which memory management issues in exception handling, under certain conditions, would cause the interpreter to segfault (:issue:`14696`, :issue:`16798`).
- Bug in :func:`read_csv` when called with ``low_memory=False`` in which a CSV with at least one column &gt; 2GB in size would incorrectly raise a ``MemoryError`` (:issue:`16798`).
- Bug in :func:`read_csv` when called with a single-element list ``header`` would return a ``DataFrame`` of all NaN values (:issue:`7757`)
- Bug in :meth:`DataFrame.to_csv` defaulting to &#39;ascii&#39; encoding in Python 3, instead of &#39;utf-8&#39; (:issue:`17097`)
- Bug in :func:`read_stata` where value labels could not be read when using an iterator (:issue:`16923`)
- Bug in :func:`read_stata` where the index was not set (:issue:`16342`)
- Bug in :func:`read_html` where import check fails when run in multiple threads (:issue:`16928`)
- Bug in :func:`read_csv` where automatic delimiter detection caused a ``TypeError`` to be thrown when a bad line was encountered rather than the correct error message (:issue:`13374`)
- Bug in :meth:`DataFrame.to_html` with ``notebook=True`` where DataFrames with named indices or non-MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively (:issue:`16792`)
- Bug in :meth:`DataFrame.to_html` in which there was no validation of the ``justify`` parameter (:issue:`17527`)
- Bug in :func:`HDFStore.select` when reading a contiguous mixed-data table featuring VLArray (:issue:`17021`)
- Bug in :func:`to_json` where several conditions (including objects with unprintable symbols, objects with deep recursion, overlong labels) caused segfaults instead of raising the appropriate exception (:issue:`14256`)

Plotting
^^^^^^^^
- Bug in plotting methods using ``secondary_y`` and ``fontsize`` not setting secondary axis font size (:issue:`12565`)
- Bug when plotting ``timedelta`` and ``datetime`` dtypes on y-axis (:issue:`16953`)
- Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for unsorted x data. (:issue:`11310`, :issue:`11471`)
- With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default settings are applied. (:issue:`15495`)
- Bug in ``Series.plot.bar`` or ``DataFrame.plot.bar`` with ``y`` not respecting user-passed ``color`` (:issue:`16822`)
- Bug causing ``plotting.parallel_coordinates`` to reset the random seed when using random colors (:issue:`17525`)

Groupby/Resample/Rolling
^^^^^^^^^^^^^^^^^^^^^^^^

- Bug in ``DataFrame.resample(...).size()`` where an empty ``DataFrame`` did not return a ``Series`` (:issue:`14962`)
- Bug in :func:`infer_freq` causing indices with 2-day gaps during the working week to be wrongly inferred as business daily (:issue:`16624`)
- Bug in ``.rolling(...).quantile()`` which incorrectly used different defaults than :func:`Series.quantile()` and :func:`DataFrame.quantile()` (:issue:`9413`, :issue:`16211`)
- Bug in ``groupby.transform()`` that would coerce boolean dtypes back to float (:issue:`16875`)
- Bug in ``Series.resample(...).apply()`` where an empty ``Series`` modified the source index and did not return the name of a ``Series`` (:issue:`14313`)
- Bug in ``.rolling(...).apply(...)`` with a ``DataFrame`` with a ``DatetimeIndex``, a ``window`` of a timedelta-convertible and ``min_periods &gt;= 1`` (:issue:`15305`)
- Bug in ``DataFrame.groupby`` where index and column keys were not recognized correctly when the number of keys equaled the number of elements on the groupby axis (:issue:`16859`)
- Bug in ``groupby.nunique()`` with ``TimeGrouper`` which cannot handle ``NaT`` correctly (:issue:`17575`)
- Bug in ``DataFrame.groupby`` where a single level selection from a ``MultiIndex`` unexpectedly sorts (:issue:`17537`)
- Bug in ``DataFrame.groupby`` where spurious warning is raised when ``Grouper`` object is used to override ambiguous column name (:issue:`17383`)
- Bug in ``TimeGrouper`` differs when passes as a list and as a scalar (:issue:`17530`)

Sparse
^^^^^^

- Bug in ``SparseSeries`` raises ``AttributeError`` when a dictionary is passed in as data (:issue:`16905`)
- Bug in :func:`SparseDataFrame.fillna` not filling all NaNs when frame was instantiated from SciPy sparse matrix (:issue:`16112`)
- Bug in :func:`SparseSeries.unstack` and :func:`SparseDataFrame.stack` (:issue:`16614`, :issue:`15045`)
- Bug in :func:`make_sparse` treating two numeric/boolean data, which have same bits, as same when array ``dtype`` is ``object`` (:issue:`17574`)
- :func:`SparseArray.all` and :func:`SparseArray.any` are now implemented to handle ``SparseArray``, these were used but not implemented (:issue:`17570`)

Reshaping
^^^^^^^^^
- Joining/Merging with a non unique ``PeriodIndex`` raised a ``TypeError`` (:issue:`16871`)
- Bug in :func:`crosstab` where non-aligned series of integers were casted to float (:issue:`17005`)
- Bug in merging with categorical dtypes with datetimelikes incorrectly raised a ``TypeError`` (:issue:`16900`)
- Bug when using :func:`isin` on a large object series and large comparison array (:issue:`16012`)
- Fixes regression from 0.20, :func:`Series.aggregate` and :func:`DataFrame.aggregate` allow dictionaries as return values again (:issue:`16741`)
- Fixes dtype of result with integer dtype input, from :func:`pivot_table` when called with ``margins=True`` (:issue:`17013`)
- Bug in :func:`crosstab` where passing two ``Series`` with the same name raised a ``KeyError`` (:issue:`13279`)
- :func:`Series.argmin`, :func:`Series.argmax`, and their counterparts on ``DataFrame`` and groupby objects work correctly with floating point data that contains infinite values (:issue:`13595`).
- Bug in :func:`unique` where checking a tuple of strings raised a ``TypeError`` (:issue:`17108`)
- Bug in :func:`concat` where order of result index was unpredictable if it contained non-comparable elements (:issue:`17344`)
- Fixes regression when sorting by multiple columns on a ``datetime64`` dtype ``Series`` with ``NaT`` values (:issue:`16836`)
- Bug in :func:`pivot_table` where the result&#39;s columns did not preserve the categorical dtype of ``columns`` when ``dropna`` was ``False`` (:issue:`17842`)
- Bug in ``DataFrame.drop_duplicates`` where dropping with non-unique column names raised a ``ValueError`` (:issue:`17836`)
- Bug in :func:`unstack` which, when called on a list of levels, would discard the ``fillna`` argument (:issue:`13971`)
- Bug in the alignment of ``range`` objects and other list-likes with ``DataFrame`` leading to operations being performed row-wise instead of column-wise (:issue:`17901`)

Numeric
^^^^^^^
- Bug in ``.clip()`` with ``axis=1`` and a list-like for ``threshold`` is passed; previously this raised ``ValueError`` (:issue:`15390`)
- :func:`Series.clip()` and :func:`DataFrame.clip()` now treat NA values for upper and lower arguments as ``None`` instead of raising ``ValueError`` (:issue:`17276`).

Categorical
^^^^^^^^^^^
- Bug in :func:`Series.isin` when called with a categorical (:issue:`16639`)
- Bug in the categorical constructor with empty values and categories causing the ``.categories`` to be an empty ``Float64Index`` rather than an empty ``Index`` with object dtype (:issue:`17248`)
- Bug in categorical operations with :ref:`Series.cat &lt;categorical.cat&gt;` not preserving the original Series&#39; name (:issue:`17509`)
- Bug in :func:`DataFrame.merge` failing for categorical columns with boolean/int data types (:issue:`17187`)
- Bug in constructing a ``Categorical``/``CategoricalDtype`` when the specified ``categories`` are of categorical type (:issue:`17884`).

.. _whatsnew_0210.pypy:

PyPy
^^^^

- Compatibility with PyPy in :func:`read_csv` with ``usecols=[&lt;unsorted ints&gt;]`` and
 :func:`read_json` (:issue:`17351`)
- Split tests into cases for CPython and PyPy where needed, which highlights the fragility
 of index matching with ``float(&#39;nan&#39;)``, ``np.nan`` and ``NAT`` (:issue:`17351`)
- Fix :func:`DataFrame.memory_usage` to support PyPy. Objects on PyPy do not have a fixed size,
 so an approximation is used instead (:issue:`17228`)

Other
^^^^^
- Bug where some inplace operators were not being wrapped and produced a copy when invoked (:issue:`12962`)
- Bug in :func:`eval` where the ``inplace`` parameter was being incorrectly handled (:issue:`16732`)

.. _whatsnew_0151:

psycopg2 2.7.3.1 -> 2.7.3.2

2.7.3.2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

  • Wheel package compiled against PostgreSQL 10.0 libpq and OpenSSL 1.0.2l (:tickets:601, 602)

rollbar 0.13.13 -> 0.13.17

0.13.17

  • Fix deprecation warning related to Logging.warn
  • Fix bug where non-copyable objects could cause an exception if they end up trying to get passed to one of the logging methods.
  • Fix bug where both trace and trace_chain could appear in the final payload, which is not allowed by the API.

0.13.16

  • Fix PyPI documentation

0.13.15

  • Fix shortener issue for Python 3

0.13.14

  • Fix bug that caused some payload objects to be turned into the wrong type when shortening is applied. This would lea