in
1 # try with a one-liner which can also save out the curve fits via:"save='/Users/ergm/Desktop/test.csv'
----> 2 r_homo = ising.fit_homopolymer(proteins, n_helices) #, save='/Users/ergm/Desktop/test.csv')
~\anaconda3\lib\site-packages\pyfolding-1.0-py3.8.egg\pyfolding\ising.py in fit_homopolymer(equilibrium_curves, topologies, p0, bounds, **kwargs)
657 # do the global fit
658 # out, covar = global_fit.fit( p0=p0, bounds=((0,-1.,0.),(10.,1.,-10.)) )
--> 659 out, covar = global_fit.fit( p0=p0, bounds=bounds )
660
661
~\anaconda3\lib\site-packages\pyfolding-1.0-py3.8.egg\pyfolding\core.py in fit(self, p0, bounds)
776 # fit the data
777 if bounds:
--> 778 out, covar = optimize.curve_fit(self, x, y, p0=p0, bounds=bounds,
779 max_nfev=20000, absolute_sigma=True,
780 sigma=self.fit_weights)
~\anaconda3\lib\site-packages\scipy\optimize\minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
793 kwargs['max_nfev'] = kwargs.pop('maxfev', None)
794
--> 795 res = least_squares(func, p0, jac=jac, bounds=bounds, method=method,
796 **kwargs)
797
~\anaconda3\lib\site-packages\scipy\optimize\_lsq\least_squares.py in least_squares(fun, x0, jac, bounds, method, ftol, xtol, gtol, x_scale, loss, f_scale, diff_step, tr_solver, tr_options, jac_sparsity, max_nfev, verbose, args, kwargs)
789
790 if np.any(lb >= ub):
--> 791 raise ValueError("Each lower bound must be strictly less than each "
792 "upper bound.")
793
ValueError: Each lower bound must be strictly less than each upper bound.
When I am running the code and I am getting the following error Automatic global fitting to the homozipper model
r_homo = ising.fit_homopolymer(proteins, n_helices)
ValueError Traceback (most recent call last)