qxcv / caffe2keras

Fork of the caffe2keras converter from @MarcBS (UNMAINTAINED)
Other
17 stars 13 forks source link

17:9 : Enum type "caffe.V1LayerParameter.LayerType" has no value named "CONVOLUTION". #6

Open pgl19thu opened 7 years ago

pgl19thu commented 7 years ago

when i run the code,it print the messgages'17:9 : Enum type "caffe.V1LayerParameter.LayerType" has no value named "CONVOLUTION".', i can't find the problem,do you know why?thanks!!!

qxcv commented 7 years ago

I'm guessing it's failing to handle capitalisation in the name. Possibly "Convolution", "convolution" or similar may work? It's hard to say without a .prototxt.

wandonye commented 7 years ago

I'm facing the same problem. Here is my .prototxt

name: "VGG_FACE_16_layers"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layers {
  bottom: "data"
  top: "conv1_1"
  name: "conv1_1"
  type: CONVOLUTION
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv1_1"
  top: "conv1_1"
  name: "relu1_1"
  type: RELU
}
layers {
  bottom: "conv1_1"
  top: "conv1_2"
  name: "conv1_2"
  type: CONVOLUTION
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv1_2"
  top: "conv1_2"
  name: "relu1_2"
  type: RELU
}
layers {
  bottom: "conv1_2"
  top: "pool1"
  name: "pool1"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layers {
  bottom: "pool1"
  top: "conv2_1"
  name: "conv2_1"
  type: CONVOLUTION
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv2_1"
  top: "conv2_1"
  name: "relu2_1"
  type: RELU
}
layers {
  bottom: "conv2_1"
  top: "conv2_2"
  name: "conv2_2"
  type: CONVOLUTION
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv2_2"
  top: "conv2_2"
  name: "relu2_2"
  type: RELU
}
layers {
  bottom: "conv2_2"
  top: "pool2"
  name: "pool2"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layers {
  bottom: "pool2"
  top: "conv3_1"
  name: "conv3_1"
  type: CONVOLUTION
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv3_1"
  top: "conv3_1"
  name: "relu3_1"
  type: RELU
}
layers {
  bottom: "conv3_1"
  top: "conv3_2"
  name: "conv3_2"
  type: CONVOLUTION
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv3_2"
  top: "conv3_2"
  name: "relu3_2"
  type: RELU
}
layers {
  bottom: "conv3_2"
  top: "conv3_3"
  name: "conv3_3"
  type: CONVOLUTION
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv3_3"
  top: "conv3_3"
  name: "relu3_3"
  type: RELU
}
layers {
  bottom: "conv3_3"
  top: "pool3"
  name: "pool3"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layers {
  bottom: "pool3"
  top: "conv4_1"
  name: "conv4_1"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv4_1"
  top: "conv4_1"
  name: "relu4_1"
  type: RELU
}
layers {
  bottom: "conv4_1"
  top: "conv4_2"
  name: "conv4_2"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv4_2"
  top: "conv4_2"
  name: "relu4_2"
  type: RELU
}
layers {
  bottom: "conv4_2"
  top: "conv4_3"
  name: "conv4_3"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv4_3"
  top: "conv4_3"
  name: "relu4_3"
  type: RELU
}
layers {
  bottom: "conv4_3"
  top: "pool4"
  name: "pool4"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layers {
  bottom: "pool4"
  top: "conv5_1"
  name: "conv5_1"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv5_1"
  top: "conv5_1"
  name: "relu5_1"
  type: RELU
}
layers {
  bottom: "conv5_1"
  top: "conv5_2"
  name: "conv5_2"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv5_2"
  top: "conv5_2"
  name: "relu5_2"
  type: RELU
}
layers {
  bottom: "conv5_2"
  top: "conv5_3"
  name: "conv5_3"
  type: CONVOLUTION
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layers {
  bottom: "conv5_3"
  top: "conv5_3"
  name: "relu5_3"
  type: RELU
}
layers {
  bottom: "conv5_3"
  top: "pool5"
  name: "pool5"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layers {
  bottom: "pool5"
  top: "fc6"
  name: "fc6"
  type: INNER_PRODUCT
  inner_product_param {
    num_output: 4096
  }
}
layers {
  bottom: "fc6"
  top: "fc6"
  name: "relu6"
  type: RELU
}
layers {
  bottom: "fc6"
  top: "fc6"
  name: "drop6"
  type: DROPOUT
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  bottom: "fc6"
  top: "fc7"
  name: "fc7"
  type: INNER_PRODUCT
  inner_product_param {
    num_output: 4096
  }
}
layers {
  bottom: "fc7"
  top: "fc7"
  name: "relu7"
  type: RELU
}
layers {
  bottom: "fc7"
  top: "fc7"
  name: "drop7"
  type: DROPOUT
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  bottom: "fc7"
  top: "fc8_train"
  name: "fc8_train"
  type: INNER_PRODUCT
  inner_product_param {
    num_output: 2
  }
}
layers {
  bottom: "fc8_train"
  top: "prob"
  name: "prob"
  type: SOFTMAX
}
beebrain commented 6 years ago

I have a same problem too.

Ildar5 commented 3 years ago

layers -> layer CONVOLUTION -> "Convolution" POOLING -> "Pooling" RELU -> "ReLU" INNER_PRODUCT -> "InnerProduct" SOFTMAX -> "Softmax" DROPOUT -> "Dropout" LRN -> "LRN"