raaaouf / RBF_neural_network_python

an implementation of a Radial Basis Function Neural Network (RBFNN) for classification problem.
MIT License
38 stars 18 forks source link

RBF code #2

Open mearcla opened 2 years ago

mearcla commented 2 years ago

Could you help me to understand why you used here: rbflayer = RBFLayer(34, initializer=InitCentersKMeans(X_train), betas=3.0,input_shape=(568,)):

34 as output_dim ? I am trying to use this code on my dataset but I have problem. any help please?

raaaouf commented 2 years ago

Hello, thank your for reaching out yes the first parameters is your output_dim for my case its 34 i forgot to change it in the readme, tell me where did you find a problem? im happy to help.

mearcla commented 2 years ago

Thank you so much for your reply, I am trying to adapt your code on my dataset, my dataset it look like this (consist of 7 columns and 1000 rows)

<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns="http://www.w3.org/TR/REC-html40">

  |   |   |   |   |   | Class -- | -- | -- | -- | -- | -- | -- 0.25 | 0 | 0 | 0 | 0 | 0.25 | 1 0.625 | 0 | 0 | 0 | 0 | 0.625 | 4 1 | 0 | 0 | 0 | 0 | 1 | 2 0.5 | 0 | 0 | 0 | 0 | 0.5 | 1 0.75 | 0 | 0 | 0 | 0 | 0.75 | 1 0.375 | 0 | 0 | 0 | 0 | 0.375 | 3 1 | 0 | 0 | 0 | 0 | 1 | 2 1 | 0 | 0 | 0 | 0 | 1 | 2 1 | 0 | 0 | 0 | 0 | 1 | 2

So I updated on your code, I used

X = data.iloc[:, 0:6].values
y = data.iloc[:, 6].values
and reshape(-1, 1)
ohe = OneHotEncoder()
y = (ohe.fit_transform(y.reshape(-1, 1)).toarray())

instead of :

###X=data.iloc[2:570,:].values
###y = data.iloc[0:1,:].values

and then commented this

###X=np.transpose(X)
###y=np.transpose(y)

My problem I can not run the code in correct way yet, I got on this error: self.centers = self.add_weight(name='centers', File "c:\Users\RBF_neural_network_python-master\RBF_neuralNetwork .py", line 118, in call assert shape[1] == self.X.shape[1] AssertionError

Please i need your appreciated help.

mearcla commented 2 years ago

This is all the code:

from keras import backend as K

###from keras.engine.topology import Layer original

from keras.layers import Layer

from keras.initializers import RandomUniform, Initializer, Constant
import numpy as np

class InitCentersRandom(Initializer):
    """ Initializer for initialization of centers of RBF network
        as random samples from the given data set.
    # Arguments
        X: matrix, dataset to choose the centers from (random rows
          are taken as centers)
    """

    def __init__(self, X):
        self.X = X

    def __call__(self, shape, dtype=None):
        assert shape[1] == self.X.shape[1]
        idx = np.random.randint(self.X.shape[0], size=shape[0])
        return self.X[idx, :]

class RBFLayer(Layer):
    """ Layer of Gaussian RBF units.
    # Example
    ```python
        model = Sequential()
        model.add(RBFLayer(10,
                           initializer=InitCentersRandom(X),
                           betas=1.0,
                           input_shape=(1,)))
        model.add(Dense(1))
# Arguments
    output_dim: number of hidden units (i.e. number of outputs of the
                layer)
    initializer: instance of initiliazer to initialize centers
    betas: float, initial value for betas
"""

def __init__(self, output_dim, initializer=None, betas=1.0, **kwargs):
    self.output_dim = output_dim
    self.init_betas = betas
    if not initializer:
        self.initializer = RandomUniform(0.0, 1.0)
    else:
        self.initializer = initializer
    super(RBFLayer, self).__init__(**kwargs)

def build(self, input_shape):

    self.centers = self.add_weight(name='centers',
                                   shape=(self.output_dim, input_shape[1]),
                                   initializer=self.initializer,
                                   trainable=True)
    self.betas = self.add_weight(name='betas',
                                 shape=(self.output_dim,),
                                 initializer=Constant(
                                     value=self.init_betas),
                                 # initializer='ones',
                                 trainable=True)

    super(RBFLayer, self).build(input_shape)

def call(self, x):

    C = K.expand_dims(self.centers)
    H = K.transpose(C-K.transpose(x))
    return K.exp(-self.betas * K.sum(H**2, axis=1))

    # C = self.centers[np.newaxis, :, :]
    # X = x[:, np.newaxis, :]

    # diffnorm = K.sum((C-X)**2, axis=-1)
    # ret = K.exp( - self.betas * diffnorm)
    # return ret

def compute_output_shape(self, input_shape):
    return (input_shape[0], self.output_dim)

def get_config(self):
    # have to define get_config to be able to use model_from_json
    config = {
        'output_dim': self.output_dim
    }
    base_config = super(RBFLayer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

from keras.initializers import Initializer from sklearn.cluster import KMeans

class InitCentersKMeans(Initializer): """ Initializer for initialization of centers of RBF network by clustering the given data set.

Arguments

    X: matrix, dataset
"""

def __init__(self, X, max_iter=100):
    self.X = X
    self.max_iter = max_iter

def __call__(self, shape, dtype=None):
    assert shape[1] == self.X.shape[1]

    n_centers = shape[0]
    km = KMeans(n_clusters=n_centers, max_iter=self.max_iter, verbose=0)
    km.fit(self.X)
    return km.cluster_centers_

Commented out IPython magic to ensure Python compatibility.

import numpy as np, pandas as pd from keras.models import Sequential from keras.layers.core import Dense from keras.layers import Activation from keras.optimizers import RMSprop

import matplotlib.pyplot as plt

data = pd.read_csv('C:/Users/RBF_neural_network_python-master/train3.csv',header=None) data.head(10) #Return 10 rows of data

datatrans=np.transpose(data) print(datatrans[0].value_counts()) datatrans[0].value_counts()[:].plot(kind='bar', alpha=0.5) plt.xlabel('\n Figure 1: Répartition selon classes \n', fontsize='17', horizontalalignment='center') plt.tick_params(axis='x', direction='out', length=10, width=3)

plt.show() #2300

data spliting

X=data.iloc[2:570,:].values

y = data.iloc[0:1,:].values

X = data.iloc[:, 0:6].values y = data.iloc[:, 6].values

data rotation

X=np.transpose(X)

y=np.transpose(y)

print('rotation ')

print(X)

print(y)

standarizing

from sklearn.preprocessing import MinMaxScaler X = MinMaxScaler().fit_transform(X)

from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder() y = (ohe.fit_transform(y.reshape(-1, 1)).toarray()) print('resulats de scalling') print(X,y)

from sklearn.model_selection import train_test_split from keras.optimizers import SGD X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state=0)#80% train et 20% test

model = Sequential() rbflayer = RBFLayer(34, initializer=InitCentersKMeans(X_train), betas=3.0, input_shape=(568,)) model.add(rbflayer) model.add(Dense(4)) model.add(Activation('linear')) model.compile(loss='mean_squared_error', optimizer=RMSprop(), metrics=['accuracy'])

print(model.summary())

history1 = model.fit(X_train, y_train, epochs=1000, batch_size=32)

import matplotlib.pyplot as plt plt.plot(history1.history['accuracy']) plt.plot(history1.history['loss']) plt.title('train accuracy and loss') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['accuracy', 'loss'], loc='upper left')

plt.show()

saving to and loading from file

z_model = "C:/Users/RBF_neural_network_python-master/my_file.h5" print("Save model to file {} ... ".format(z_model), end="") model.save(z_model) print("OK")

model already saved in file

from tensorflow.python.keras.models import load_model newmodel1= load_model("C:/Users/RBF_neural_network_python-master/my_file.h5",custom_objects={'RBFLayer': RBFLayer}) print("OK")

Evaluate the model on the test data using evaluate

print("Evaluate on test data") results = newmodel1.evaluate(X_test, y_test, batch_size=32) print("test loss:", results[0]) print("test accuracy:",results[1]*100,'%')

y_pred = newmodel1.predict(X_test)

Converting predictions to label

pred = list()

for i in range(len(y_pred)):

pred.append(np.argmax(y_pred[i]))

Converting one hot encoded test label to label

test = list()

for i in range(len(y_test)):

test.append(np.argmax(y_test[i]))

from sklearn.metrics import accuracy_score

a = accuracy_score(pred,test)

print('Test Accuracy is:', a*100)

mearcla commented 2 years ago

There is no answer!! :(

cvol9999 commented 1 year ago

I am also having the same issue :( Did you end up fixing it in the end?