Open gaabrielfranco opened 2 years ago
Second that. The next lines also look strange to me: why, depending on the dimension of Xtrain, the code uses the classifier with either custom parameters or default ones?
if bootstrap:
np.random.seed()
random.seed()
I = np.random.choice(num_samp,size = num_samp, replace = True)
samples = all_samples[I,:]
else:
samples = all_samples
Xtrain,Ytrain,Xtest,Ytest,CI_data = CI_sampler_conditional_kNN(all_samples[:,Xcoords],all_samples[:,Ycoords], None,train_samp,k)
s1,s2 = Xtrain.shape
if s2 >= 4:
model = xgb.XGBClassifier(nthread=nthread,learning_rate =0.02, n_estimators=bp['n_estimator'], max_depth=bp['max_depth'],min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=bp['colsample_bytree'],objective= 'binary:logistic',scale_pos_weight=1, seed=11)
else:
model = xgb.XGBClassifier()
In the function XGBOUT2, you have the following code:
You create the variable samples when bootstrap is True, but when you call the CI_sampler_conditional_kNN function, you use the variable all_samples. In my understanding, you should use the variable samples in this case. Am I right?
BTW, this is an excellent paper!