Closed pseudotensor closed 1 year ago
But if I remove the fill, then no issues:
import cudf
import cupy
import pandas as pd
X = pd.read_csv("df.csv")
y = X['target'].copy()
X = cudf.from_pandas(X)
y = cudf.from_pandas(y)
ar = cupy.asarray(y).flatten()
ar.sort()
or if I remove the X from_pandas:
import cudf
import cupy
import pandas as pd
X = pd.read_csv("df.csv")
y = X['target'].copy()
#X = cudf.from_pandas(X).fillna(0.0)
y = cudf.from_pandas(y).fillna(0.0)
ar = cupy.asarray(y).flatten()
ar.sort()
also no problems
This bug makes CUML stuff nearly useless.
import cudf
import cupy
import pandas as pd
X = pd.read_csv("df.csv")
y = X['target'].copy()
X = cudf.from_pandas(X).astype('float32')
y = cudf.from_pandas(y).astype('float32')
ar = cupy.asarray(y).flatten()
ar.sort()
This also fails. So seems like any modification in cudf-land leads to failure.
Can you provide information about your environment, cuDF version, etc?
Hi, Please see the CUML issue I referenced already in the first comment, where I provide that information: https://github.com/rapidsai/cuml/issues/4048#issue-942382933
In the nightly as of 2021-07-12, I am unable to reproduce this issue on my system.
import cudf
import cupy
import pandas as pd
X = pd.read_csv("df.csv")
y = X['target']
X = X.drop('target', axis=1)
gpu_id = 0
cupy.cuda.Device(gpu_id).use()
X = cudf.from_pandas(X).fillna(0.0)
y = cudf.from_pandas(y).fillna(0.0)
ar = cupy.asarray(y).flatten()
ar.sort()
print(ar) # my addition
CUDA_VISIBLE_DEVICES="0" python radixtest.py
[0 0 0 ... 1 1 1]
./print_env.sh
**git*** commit b0d86d2bfe8814cc7b717156b8b7fa9d5d2198bd (HEAD -> branch-21.08, origin/branch-21.08, origin/HEAD) Author: Michael WangDate: Mon Jul 12 22:43:07 2021 -0700 Add `datetime::is_leap_year` (#8711) Part 1 of #8677 This PR adds `datetime::is_leap_year`. The function returns `true` for datetime column rows with leap year; `false` for rows with non leap years, and `null` for null rows. Authors: - Michael Wang (https://github.com/isVoid) Approvers: - Mark Harris (https://github.com/harrism) - Karthikeyan (https://github.com/karthikeyann) URL: https://github.com/rapidsai/cudf/pull/8711 **git submodules*** ***OS Information*** DGX_NAME="DGX Server" DGX_PRETTY_NAME="NVIDIA DGX Server" DGX_SWBUILD_DATE="2020-03-04" DGX_SWBUILD_VERSION="4.4.0" DGX_COMMIT_ID="ee09ebc" DGX_PLATFORM="DGX Server for DGX-2" DGX_SERIAL_NUMBER="0574318000281" DISTRIB_ID=Ubuntu DISTRIB_RELEASE=18.04 DISTRIB_CODENAME=bionic DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS" NAME="Ubuntu" VERSION="18.04.4 LTS (Bionic Beaver)" ID=ubuntu ID_LIKE=debian PRETTY_NAME="Ubuntu 18.04.4 LTS" VERSION_ID="18.04" HOME_URL="https://www.ubuntu.com/" SUPPORT_URL="https://help.ubuntu.com/" BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/" PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy" VERSION_CODENAME=bionic UBUNTU_CODENAME=bionic Linux exp01 4.15.0-76-generic #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux ***GPU Information*** Tue Jul 13 06:37:14 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla V100-SXM3... On | 00000000:34:00.0 Off | 0 | | N/A 35C P0 67W / 350W | 736MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM3... On | 00000000:36:00.0 Off | 0 | | N/A 31C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 2 Tesla V100-SXM3... On | 00000000:39:00.0 Off | 0 | | N/A 38C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 3 Tesla V100-SXM3... On | 00000000:3B:00.0 Off | 0 | | N/A 38C P0 52W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 4 Tesla V100-SXM3... On | 00000000:57:00.0 Off | 0 | | N/A 31C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 5 Tesla V100-SXM3... On | 00000000:59:00.0 Off | 0 | | N/A 37C P0 52W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 6 Tesla V100-SXM3... On | 00000000:5C:00.0 Off | 0 | | N/A 32C P0 51W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 7 Tesla V100-SXM3... On | 00000000:5E:00.0 Off | 0 | | N/A 37C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 8 Tesla V100-SXM3... On | 00000000:B7:00.0 Off | 0 | | N/A 32C P0 51W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 9 Tesla V100-SXM3... On | 00000000:B9:00.0 Off | 0 | | N/A 35C P0 49W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 10 Tesla V100-SXM3... On | 00000000:BC:00.0 Off | 0 | | N/A 36C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 11 Tesla V100-SXM3... On | 00000000:BE:00.0 Off | 0 | | N/A 38C P0 50W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 12 Tesla V100-SXM3... On | 00000000:E0:00.0 Off | 0 | | N/A 32C P0 48W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 13 Tesla V100-SXM3... On | 00000000:E2:00.0 Off | 0 | | N/A 34C P0 49W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 14 Tesla V100-SXM3... On | 00000000:E5:00.0 Off | 0 | | N/A 38C P0 53W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 15 Tesla V100-SXM3... On | 00000000:E7:00.0 Off | 0 | | N/A 37C P0 48W / 350W | 5MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 74437 C ...s/rapids-21.08/bin/python 729MiB | +-----------------------------------------------------------------------------+ WARNING: infoROM is corrupted at gpu 0000:39:00.0 WARNING: infoROM is corrupted at gpu 0000:5C:00.0 ***CPU*** Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz Stepping: 4 CPU MHz: 2045.141 CPU max MHz: 3700.0000 CPU min MHz: 1200.0000 BogoMIPS: 5400.00 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 1024K L3 cache: 33792K NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d ***CMake*** /usr/bin/cmake cmake version 3.10.2 CMake suite maintained and supported by Kitware (kitware.com/cmake). ***g++*** /usr/bin/g++ g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Copyright (C) 2017 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ***nvcc*** /usr/local/cuda/bin/nvcc nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Sun_Feb_14_21:12:58_PST_2021 Cuda compilation tools, release 11.2, V11.2.152 Build cuda_11.2.r11.2/compiler.29618528_0 ***Python*** /raid/nicholasb/miniconda3/envs/rapids-21.08/bin/python Python 3.8.10 ***Environment Variables*** PATH : /home/nfs/nicholasb/bin:/home/nfs/nicholasb/.local/bin:/raid/nicholasb/google-cloud-sdk/bin:/raid/nicholasb/miniconda3/envs/rapids-21.08/bin:/raid/nicholasb/miniconda3/condabin:/usr/local/cuda/bin:/opt/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/nfs/nicholasb/miniconda3/bin:/usr/local/cuda/bin LD_LIBRARY_PATH : NUMBAPRO_NVVM : NUMBAPRO_LIBDEVICE : CONDA_PREFIX : /raid/nicholasb/miniconda3/envs/rapids-21.08 PYTHON_PATH : ***conda packages*** /raid/nicholasb/miniconda3/condabin/conda # packages in environment at /raid/nicholasb/miniconda3/envs/rapids-21.08: # # Name Version Build Channel _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 1_gnu conda-forge abseil-cpp 20210324.2 h9c3ff4c_0 conda-forge aiohttp 3.7.4.post0 py38h497a2fe_0 conda-forge anyio 3.2.1 py38h578d9bd_0 conda-forge appdirs 1.4.4 pyh9f0ad1d_0 conda-forge argon2-cffi 20.1.0 py38h497a2fe_2 conda-forge arrow-cpp 4.0.1 py38hf0991f3_4_cuda conda-forge arrow-cpp-proc 3.0.0 cuda conda-forge async-timeout 3.0.1 py_1000 conda-forge async_generator 1.10 py_0 conda-forge attrs 21.2.0 pyhd8ed1ab_0 conda-forge aws-c-cal 0.5.11 h95a6274_0 conda-forge aws-c-common 0.6.2 h7f98852_0 conda-forge aws-c-event-stream 0.2.7 h3541f99_13 conda-forge aws-c-io 0.10.5 hfb6a706_0 conda-forge aws-checksums 0.1.11 ha31a3da_7 conda-forge aws-sdk-cpp 1.8.186 hb4091e7_3 conda-forge babel 2.9.1 pyh44b312d_0 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge backports 1.0 py_2 conda-forge backports.functools_lru_cache 1.6.4 pyhd8ed1ab_0 conda-forge bleach 3.3.0 pyh44b312d_0 conda-forge blosc 1.21.0 h9c3ff4c_0 conda-forge bokeh 2.3.3 py38h578d9bd_0 conda-forge boost 1.74.0 py38hc10631b_3 conda-forge boost-cpp 1.74.0 h312852a_4 conda-forge brotli 1.0.9 h7f98852_5 conda-forge brotli-bin 1.0.9 h7f98852_5 conda-forge brotlipy 0.7.0 py38h497a2fe_1001 conda-forge brunsli 0.1 h9c3ff4c_0 conda-forge bzip2 1.0.8 h7f98852_4 conda-forge c-ares 1.17.1 h7f98852_1 conda-forge ca-certificates 2021.5.30 ha878542_0 conda-forge cachetools 4.2.2 pyhd8ed1ab_0 conda-forge cairo 1.16.0 h6cf1ce9_1008 conda-forge certifi 2021.5.30 py38h578d9bd_0 conda-forge cffi 1.14.6 py38ha65f79e_0 conda-forge cfitsio 3.470 hb418390_7 conda-forge chardet 4.0.0 py38h578d9bd_1 conda-forge charls 2.2.0 h9c3ff4c_0 conda-forge click 7.1.2 pyh9f0ad1d_0 conda-forge click-plugins 1.1.1 py_0 conda-forge cligj 0.7.2 pyhd8ed1ab_0 conda-forge cloudpickle 1.6.0 py_0 conda-forge colorcet 2.0.6 pyhd8ed1ab_0 conda-forge cryptography 3.4.7 py38ha5dfef3_0 conda-forge cucim 21.08.00a210712 cuda_11.2_py38_g8da6ca9_11 rapidsai-nightly cudatoolkit 11.2.72 h2bc3f7f_0 nvidia cudf 21.08.00a210711 cuda_11.2_py38_g8320a15cda_263 rapidsai-nightly cudf_kafka 21.08.00a210711 py38_g8320a15cda_263 rapidsai-nightly cugraph 21.08.00a210712 py38_g1a636029_76 rapidsai-nightly cuml 21.08.00a210712 cuda11.2_py38_gc9abba1a4_113 rapidsai-nightly cupy 9.0.0 py38ha69542f_0 conda-forge curl 7.77.0 hea6ffbf_0 conda-forge cusignal 21.08.00a210712 py37_gb704464_21 rapidsai-nightly cuspatial 21.08.00a210712 py38_g8c31c2c_22 rapidsai-nightly custreamz 21.08.00a210711 py38_g8320a15cda_263 rapidsai-nightly cuxfilter 21.08.00a210712 py38_g652bf1c_16 rapidsai-nightly cycler 0.10.0 py_2 conda-forge cyrus-sasl 2.1.27 h230043b_2 conda-forge cytoolz 0.11.0 py38h497a2fe_3 conda-forge dask 2021.7.0 pyhd8ed1ab_0 conda-forge dask-core 2021.7.0 pyhd8ed1ab_0 conda-forge dask-cuda 21.08.00a210712 py38_33 rapidsai-nightly dask-cudf 21.08.00a210711 py38_g8320a15cda_263 rapidsai-nightly datashader 0.11.1 pyh9f0ad1d_0 conda-forge datashape 0.5.4 py_1 conda-forge debugpy 1.3.0 py38h709712a_0 conda-forge decorator 4.4.2 py_0 conda-forge defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge distributed 2021.7.0 py38h578d9bd_0 conda-forge dlpack 0.5 h9c3ff4c_0 conda-forge entrypoints 0.3 pyhd8ed1ab_1003 conda-forge expat 2.4.1 h9c3ff4c_0 conda-forge faiss-proc 1.0.0 cuda conda-forge fastavro 1.4.2 py38h497a2fe_0 conda-forge fastrlock 0.6 py38h709712a_1 conda-forge fiona 1.8.20 py38hdb5a769_0 conda-forge fontconfig 2.13.1 hba837de_1005 conda-forge freetype 2.10.4 h0708190_1 conda-forge freexl 1.0.6 h7f98852_0 conda-forge fsspec 2021.6.1 pyhd8ed1ab_0 conda-forge gdal 3.2.2 py38h507a4fd_7 conda-forge geopandas 0.9.0 pyhd8ed1ab_1 conda-forge geopandas-base 0.9.0 pyhd8ed1ab_1 conda-forge geos 3.9.1 h9c3ff4c_2 conda-forge geotiff 1.6.0 h4f31c25_6 conda-forge gettext 0.19.8.1 h0b5b191_1005 conda-forge gflags 2.2.2 he1b5a44_1004 conda-forge giflib 5.2.1 h36c2ea0_2 conda-forge glog 0.5.0 h48cff8f_0 conda-forge grpc-cpp 1.38.1 h36ce80c_0 conda-forge hdf4 4.2.15 h10796ff_3 conda-forge hdf5 1.10.6 nompi_h6a2412b_1114 conda-forge heapdict 1.0.1 py_0 conda-forge icu 68.1 h58526e2_0 conda-forge idna 2.10 pyh9f0ad1d_0 conda-forge imagecodecs 2021.6.8 py38hf154af1_0 conda-forge imageio 2.9.0 py_0 conda-forge importlib-metadata 4.6.1 py38h578d9bd_0 conda-forge ipykernel 6.0.1 py38hd0cf306_0 conda-forge ipython 7.25.0 py38hd0cf306_1 conda-forge ipython_genutils 0.2.0 py_1 conda-forge ipywidgets 7.6.3 pyhd3deb0d_0 conda-forge jbig 2.1 h7f98852_2003 conda-forge jedi 0.18.0 py38h578d9bd_2 conda-forge jinja2 3.0.1 pyhd8ed1ab_0 conda-forge joblib 1.0.1 pyhd8ed1ab_0 conda-forge jpeg 9d h36c2ea0_0 conda-forge json-c 0.15 h98cffda_0 conda-forge json5 0.9.5 pyh9f0ad1d_0 conda-forge jsonschema 3.2.0 pyhd8ed1ab_3 conda-forge jupyter-server-proxy 3.1.0 pyhd8ed1ab_0 conda-forge jupyter_client 6.1.12 pyhd8ed1ab_0 conda-forge jupyter_core 4.7.1 py38h578d9bd_0 conda-forge jupyter_server 1.9.0 pyhd8ed1ab_0 conda-forge jupyterlab 3.0.16 pyhd8ed1ab_0 conda-forge jupyterlab_pygments 0.1.2 pyh9f0ad1d_0 conda-forge jupyterlab_server 2.6.1 pyhd8ed1ab_0 conda-forge jupyterlab_widgets 1.0.0 pyhd8ed1ab_1 conda-forge jxrlib 1.1 h7f98852_2 conda-forge kealib 1.4.14 hcc255d8_2 conda-forge kiwisolver 1.3.1 py38h1fd1430_1 conda-forge krb5 1.19.1 hcc1bbae_0 conda-forge lcms2 2.12 hddcbb42_0 conda-forge ld_impl_linux-64 2.36.1 hea4e1c9_1 conda-forge lerc 2.2.1 h9c3ff4c_0 conda-forge libaec 1.0.5 h9c3ff4c_0 conda-forge libblas 3.9.0 9_openblas conda-forge libbrotlicommon 1.0.9 h7f98852_5 conda-forge libbrotlidec 1.0.9 h7f98852_5 conda-forge libbrotlienc 1.0.9 h7f98852_5 conda-forge libcblas 3.9.0 9_openblas conda-forge libcucim 21.08.00a210712 cuda11.2_g8da6ca9_11 rapidsai-nightly libcudf 21.08.00a210712 cuda11.2_g0b9ea0176c_264 rapidsai-nightly libcudf_kafka 21.08.00a210711 g8320a15cda_263 rapidsai-nightly libcugraph 21.08.00a210712 cuda11.2_g1a636029_76 rapidsai-nightly libcuml 21.08.00a210712 cuda11.2_gc9abba1a4_113 rapidsai-nightly libcumlprims 21.08.00a210605 cuda11.2_g8d4e6b0_2 rapidsai-nightly libcurl 7.77.0 h2574ce0_0 conda-forge libcuspatial 21.08.00a210712 cuda11.2_g8c31c2c_22 rapidsai-nightly libdap4 3.20.6 hd7c4107_2 conda-forge libdeflate 1.7 h7f98852_5 conda-forge libedit 3.1.20191231 he28a2e2_2 conda-forge libev 4.33 h516909a_1 conda-forge libevent 2.1.10 hcdb4288_3 conda-forge libfaiss 1.7.0 cuda112h5bea7ad_8_cuda conda-forge libffi 3.3 h58526e2_2 conda-forge libgcc-ng 9.3.0 h2828fa1_19 conda-forge libgcrypt 1.9.3 h7f98852_1 conda-forge libgdal 3.2.2 h8f005ca_7 conda-forge libgfortran-ng 9.3.0 hff62375_19 conda-forge libgfortran5 9.3.0 hff62375_19 conda-forge libglib 2.68.3 h3e27bee_0 conda-forge libgomp 9.3.0 h2828fa1_19 conda-forge libgpg-error 1.42 h9c3ff4c_0 conda-forge libgsasl 1.8.0 2 conda-forge libhwloc 2.3.0 h5e5b7d1_1 conda-forge libiconv 1.16 h516909a_0 conda-forge libkml 1.3.0 h238a007_1013 conda-forge liblapack 3.9.0 9_openblas conda-forge libllvm10 10.0.1 he513fc3_3 conda-forge libnetcdf 4.8.0 nompi_hcd642e3_103 conda-forge libnghttp2 1.43.0 h812cca2_0 conda-forge libntlm 1.4 h7f98852_1002 conda-forge libopenblas 0.3.15 pthreads_h8fe5266_1 conda-forge libpng 1.6.37 h21135ba_2 conda-forge libpq 13.3 hd57d9b9_0 conda-forge libprotobuf 3.16.0 h780b84a_0 conda-forge librdkafka 1.6.1 hc49e61c_1 conda-forge librmm 21.08.00a210712 cuda11.2_geb2b991_34 rapidsai-nightly librttopo 1.1.0 h1185371_6 conda-forge libsodium 1.0.18 h36c2ea0_1 conda-forge libspatialindex 1.9.3 h9c3ff4c_3 conda-forge libspatialite 5.0.1 h8694cbe_5 conda-forge libssh2 1.9.0 ha56f1ee_6 conda-forge libstdcxx-ng 9.3.0 h6de172a_19 conda-forge libthrift 0.14.2 he6d91bd_1 conda-forge libtiff 4.3.0 hf544144_1 conda-forge libutf8proc 2.6.1 h7f98852_0 conda-forge libuuid 2.32.1 h7f98852_1000 conda-forge libuv 1.41.1 h7f98852_0 conda-forge libwebp 1.2.0 h3452ae3_0 conda-forge libwebp-base 1.2.0 h7f98852_2 conda-forge libxcb 1.13 h7f98852_1003 conda-forge libxgboost 1.4.2dev.rapidsai21.08 cuda11.2_0 rapidsai-nightly libxml2 2.9.12 h72842e0_0 conda-forge libzip 1.8.0 h4de3113_0 conda-forge libzopfli 1.0.3 h9c3ff4c_0 conda-forge llvmlite 0.36.0 py38h4630a5e_0 conda-forge locket 0.2.0 py_2 conda-forge lz4-c 1.9.3 h9c3ff4c_0 conda-forge mapclassify 2.4.2 pyhd8ed1ab_0 conda-forge markdown 3.3.4 pyhd8ed1ab_0 conda-forge markupsafe 2.0.1 py38h497a2fe_0 conda-forge matplotlib-base 3.4.2 py38hcc49a3a_0 conda-forge matplotlib-inline 0.1.2 pyhd8ed1ab_2 conda-forge mistune 0.8.4 py38h497a2fe_1004 conda-forge msgpack-python 1.0.2 py38h1fd1430_1 conda-forge multidict 5.1.0 py38h497a2fe_1 conda-forge multipledispatch 0.6.0 py_0 conda-forge munch 2.5.0 py_0 conda-forge nbclassic 0.3.1 pyhd8ed1ab_1 conda-forge nbclient 0.5.3 pyhd8ed1ab_0 conda-forge nbconvert 6.1.0 py38h578d9bd_0 conda-forge nbformat 5.1.3 pyhd8ed1ab_0 conda-forge nccl 2.10.3.1 hdc17891_0 conda-forge ncurses 6.2 h58526e2_4 conda-forge nest-asyncio 1.5.1 pyhd8ed1ab_0 conda-forge networkx 2.6.1 pyhd8ed1ab_1 conda-forge nodejs 14.17.1 h92b4a50_1 conda-forge notebook 6.4.0 pyha770c72_0 conda-forge numba 0.53.1 py38h8b71fd7_1 conda-forge numpy 1.21.0 py38h9894fe3_0 conda-forge nvtx 0.2.3 py38h497a2fe_0 conda-forge olefile 0.46 pyh9f0ad1d_1 conda-forge openjdk 8.0.282 h7f98852_0 conda-forge openjpeg 2.4.0 hb52868f_1 conda-forge openssl 1.1.1k h7f98852_0 conda-forge orc 1.6.9 h58a87f1_0 conda-forge packaging 21.0 pyhd8ed1ab_0 conda-forge pandas 1.2.5 py38h1abd341_0 conda-forge pandoc 2.14.0.3 h7f98852_0 conda-forge pandocfilters 1.4.2 py_1 conda-forge panel 0.11.3 pyhd8ed1ab_0 conda-forge param 1.11.1 pyh6c4a22f_0 conda-forge parquet-cpp 1.5.1 2 conda-forge parso 0.8.2 pyhd8ed1ab_0 conda-forge partd 1.2.0 pyhd8ed1ab_0 conda-forge pcre 8.45 h9c3ff4c_0 conda-forge pexpect 4.8.0 pyh9f0ad1d_2 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 8.3.1 py38h8e6f84c_0 conda-forge pip 21.1.3 pyhd8ed1ab_0 conda-forge pixman 0.40.0 h36c2ea0_0 conda-forge pooch 1.4.0 pyhd8ed1ab_0 conda-forge poppler 21.03.0 h93df280_0 conda-forge poppler-data 0.4.10 0 conda-forge postgresql 13.3 h2510834_0 conda-forge proj 8.0.1 h277dcde_0 conda-forge prometheus_client 0.11.0 pyhd8ed1ab_0 conda-forge prompt-toolkit 3.0.19 pyha770c72_0 conda-forge protobuf 3.16.0 py38h709712a_0 conda-forge psutil 5.8.0 py38h497a2fe_1 conda-forge pthread-stubs 0.4 h36c2ea0_1001 conda-forge ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge py-xgboost 1.4.2dev.rapidsai21.08 cuda11.2py38_0 rapidsai-nightly py4j 0.10.9 pyh9f0ad1d_0 conda-forge pyarrow 4.0.1 py38hb53058b_4_cuda conda-forge pycparser 2.20 pyh9f0ad1d_2 conda-forge pyct 0.4.6 py_0 conda-forge pyct-core 0.4.6 py_0 conda-forge pydeck 0.5.0 pyh9f0ad1d_0 conda-forge pyee 7.0.4 pyh9f0ad1d_0 conda-forge pygments 2.9.0 pyhd8ed1ab_0 conda-forge pynvml 11.0.0 pyhd8ed1ab_0 conda-forge pyopenssl 20.0.1 pyhd8ed1ab_0 conda-forge pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge pyppeteer 0.2.2 py_1 conda-forge pyproj 3.1.0 py38h03a1999_3 conda-forge pyrsistent 0.17.3 py38h497a2fe_2 conda-forge pysocks 1.7.1 py38h578d9bd_3 conda-forge pyspark 3.1.2 pyh6c4a22f_0 conda-forge python 3.8.10 h49503c6_1_cpython conda-forge python-confluent-kafka 1.6.0 py38h497a2fe_1 conda-forge python-dateutil 2.8.1 py_0 conda-forge python_abi 3.8 2_cp38 conda-forge pytz 2021.1 pyhd8ed1ab_0 conda-forge pyviz_comms 2.1.0 pyhd8ed1ab_0 conda-forge pywavelets 1.1.1 py38h5c078b8_3 conda-forge pyyaml 5.4.1 py38h497a2fe_0 conda-forge pyzmq 22.1.0 py38h2035c66_0 conda-forge rapids 21.08.00a210709 cuda11.2_py38_g6430beb_23 rapidsai-nightly rapids-xgboost 21.08.00a210709 cuda11.2_py38_g6430beb_23 rapidsai-nightly re2 2021.06.01 h9c3ff4c_0 conda-forge readline 8.1 h46c0cb4_0 conda-forge requests 2.25.1 pyhd3deb0d_0 conda-forge requests-unixsocket 0.2.0 py_0 conda-forge rmm 21.08.00a210712 cuda_11.2_py38_geb2b991_34 rapidsai-nightly rtree 0.9.7 py38h02d302b_1 conda-forge s2n 1.0.10 h9b69904_0 conda-forge scikit-image 0.18.1 py38h51da96c_0 conda-forge scikit-learn 0.24.2 py38hdc147b9_0 conda-forge scipy 1.7.0 py38h7b17777_0 conda-forge send2trash 1.7.1 pyhd8ed1ab_0 conda-forge setuptools 49.6.0 py38h578d9bd_3 conda-forge shapely 1.7.1 py38haeee4fe_5 conda-forge simpervisor 0.4 pyhd8ed1ab_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snappy 1.1.8 he1b5a44_3 conda-forge sniffio 1.2.0 py38h578d9bd_1 conda-forge sortedcontainers 2.4.0 pyhd8ed1ab_0 conda-forge spdlog 1.8.5 h4bd325d_0 conda-forge sqlite 3.36.0 h9cd32fc_0 conda-forge streamz 0.6.2 pyh44b312d_0 conda-forge tblib 1.7.0 pyhd8ed1ab_0 conda-forge terminado 0.10.1 py38h578d9bd_0 conda-forge testpath 0.5.0 pyhd8ed1ab_0 conda-forge threadpoolctl 2.2.0 pyh8a188c0_0 conda-forge tifffile 2021.7.2 pyhd8ed1ab_0 conda-forge tiledb 2.3.1 he87e0bf_0 conda-forge tk 8.6.10 h21135ba_1 conda-forge toolz 0.11.1 py_0 conda-forge tornado 6.1 py38h497a2fe_1 conda-forge tqdm 4.61.2 pyhd8ed1ab_1 conda-forge traitlets 5.0.5 py_0 conda-forge treelite 1.3.0 py38hd08a91b_0 conda-forge treelite-runtime 1.3.0 pypi_0 pypi typing-extensions 3.10.0.0 hd8ed1ab_0 conda-forge typing_extensions 3.10.0.0 pyha770c72_0 conda-forge tzcode 2021a h7f98852_2 conda-forge tzdata 2021a he74cb21_1 conda-forge ucx 1.9.0+gcd9efd3 cuda11.2_0 rapidsai-nightly ucx-proc 1.0.0 gpu rapidsai-nightly ucx-py 0.21.0a210712 py38_gcd9efd3_29 rapidsai-nightly urllib3 1.26.6 pyhd8ed1ab_0 conda-forge wcwidth 0.2.5 pyh9f0ad1d_2 conda-forge webencodings 0.5.1 py_1 conda-forge websocket-client 0.57.0 py38h578d9bd_4 conda-forge websockets 8.1 py38h497a2fe_3 conda-forge wheel 0.36.2 pyhd3deb0d_0 conda-forge widgetsnbextension 3.5.1 py38h578d9bd_4 conda-forge xarray 0.18.2 pyhd8ed1ab_0 conda-forge xerces-c 3.2.3 h9d8b166_2 conda-forge xgboost 1.4.2dev.rapidsai21.08 cuda11.2py38_0 rapidsai-nightly xorg-kbproto 1.0.7 h7f98852_1002 conda-forge xorg-libice 1.0.10 h7f98852_0 conda-forge xorg-libsm 1.2.3 hd9c2040_1000 conda-forge xorg-libx11 1.7.2 h7f98852_0 conda-forge xorg-libxau 1.0.9 h7f98852_0 conda-forge xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge xorg-libxext 1.3.4 h7f98852_1 conda-forge xorg-libxrender 0.9.10 h7f98852_1003 conda-forge xorg-renderproto 0.11.1 h7f98852_1002 conda-forge xorg-xextproto 7.3.0 h7f98852_1002 conda-forge xorg-xproto 7.0.31 h7f98852_1007 conda-forge xz 5.2.5 h516909a_1 conda-forge yaml 0.2.5 h516909a_0 conda-forge yarl 1.6.3 py38h497a2fe_2 conda-forge zeromq 4.3.4 h9c3ff4c_0 conda-forge zfp 0.5.5 h9c3ff4c_5 conda-forge zict 2.0.0 py_0 conda-forge zipp 3.5.0 pyhd8ed1ab_0 conda-forge zlib 1.2.11 h516909a_1010 conda-forge zstd 1.5.0 ha95c52a_0 conda-forge
It doesn't happen on my 1 GPU system, only my 2 GPU 1080ti system, as I explained in the original cuml issue. So perhaps having so many GPUs also leads to differences.
This is on 210713 nightly, same problem:
https://github.com/rapidsai/cudf/issues/8721#issuecomment-878792961
still fails.
And something like this still fails:
import cudf
import cupy
import pandas as pd
import numpy as np
import pickle
X, y = pickle.load(open("doo.pkl", "rb"))
gpu_id = 0
cupy.cuda.Device(gpu_id).use()
X = cudf.from_pandas(X.to_pandas()).fillna(0.0)
y = cudf.from_pandas(pd.Series(y)).fillna(0.0)
from cuml.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X, y)
Traceback (most recent call last):
File "testradix10.py", line 18, in <module>
model.fit(X, y)
File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cuml/internals/api_decorators.py", line 409, in inner_with_setters
return func(*args, **kwargs)
File "cuml/ensemble/randomforestclassifier.pyx", line 456, in cuml.ensemble.randomforestclassifier.RandomForestClassifier.fit
File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cuml/internals/api_decorators.py", line 567, in inner_set
ret_val = func(*args, **kwargs)
File "cuml/ensemble/randomforest_common.pyx", line 263, in cuml.ensemble.randomforest_common.BaseRandomForestModel._dataset_setup_for_fit
File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cupy/_manipulation/add_remove.py", line 179, in unique
ar.sort()
File "cupy/_core/core.pyx", line 695, in cupy._core.core.ndarray.sort
File "cupy/_core/core.pyx", line 713, in cupy._core.core.ndarray.sort
File "cupy/_core/_routines_sorting.pyx", line 43, in cupy._core._routines_sorting._ndarray_sort
File "cupy/cuda/thrust.pyx", line 75, in cupy.cuda.thrust.sort
RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument
I'm giving more examples in case one of them works for you.
Do you by chance have an example that doesn't depend on datatable?
We have not been able to reproduce this behavior on V100 or P100 machines (cc @galipremsagar )
Hello!
I kind of have the same issue. At least the error seems to be similar. But with dask_cudf. Since dask_cudf is located in this repository I hope that I'm allowed to post this here:
import numpy as np
import pandas as pd
import cudf
import dask_cudf
def ginic_gpu(actual_pred):
#this is not a reliable method to find `n`
n = actual_pred.divisions[-1]+1
a_s = actual_pred.set_index(actual_pred.columns[-1])[actual_pred.columns[0]]
a_c = a_s.cumsum()
gini_sum = a_c.sum() / a_s.sum() - (n+1) / 2.0
gini_sum = gini_sum.compute()
return gini_sum / n
if __name__ == "__main__":
np_data = np.random.random((100000,2))
pd_data = pd.DataFrame(data=np_data)
cudf_data = cudf.from_pandas(pd_data)
dask_cudf_data = dask_cudf.from_cudf(cudf_data, npartitions=4)
print(ginic_gpu(dask_cudf_data))
The error occurs only for sufficiently large sizes of the dataset.
Traceback (most recent call last):
File "radix_sort_bug.py", line 21, in <module>
print(ginic_gpu(dask_cudf_data))
File "radix_sort_bug.py", line 9, in ginic_gpu
a_s = actual_pred.set_index(actual_pred.columns[-1])[actual_pred.columns[0]]
File "lama_venv/lib/python3.8/site-packages/dask_cudf/core.py", line 237, in set_index
return super().set_index(
File "lama_venv/lib/python3.8/site-packages/dask/dataframe/core.py", line 4131, in set_index
return set_index(
File "lama_venv/lib/python3.8/site-packages/dask/dataframe/shuffle.py", line 162, in set_index
divisions, mins, maxes = _calculate_divisions(
File "lama_venv/lib/python3.8/site-packages/dask/dataframe/shuffle.py", line 35, in _calculate_divisions
divisions, sizes, mins, maxes = base.compute(divisions, sizes, mins, maxes)
File "lama_venv/lib/python3.8/site-packages/dask/base.py", line 567, in compute
results = schedule(dsk, keys, **kwargs)
File "lama_venv/lib/python3.8/site-packages/dask/threaded.py", line 79, in get
results = get_async(
File "ama_venv/lib/python3.8/site-packages/dask/local.py", line 514, in get_async
raise_exception(exc, tb)
File "lama_venv/lib/python3.8/site-packages/dask/local.py", line 325, in reraise
raise exc
File "lama_venv/lib/python3.8/site-packages/dask/local.py", line 223, in execute_task
result = _execute_task(task, data)
File "lama_venv/lib/python3.8/site-packages/dask/core.py", line 121, in _execute_task
return func(*(_execute_task(a, cache) for a in args))
File "lama_venv/lib/python3.8/site-packages/dask/dataframe/partitionquantiles.py", line 420, in percentiles_summary
vals, n = _percentile(data, qs, interpolation=interpolation)
File "lama_venv/lib/python3.8/site-packages/dask/array/percentile.py", line 34, in _percentile
return np.percentile(a, q, interpolation=interpolation), n
File "<__array_function__ internals>", line 5, in percentile
File "cupy/_core/core.pyx", line 1488, in cupy._core.core.ndarray.__array_function__
File "lama_venv/lib/python3.8/site-packages/cupy/_statistics/order.py", line 308, in percentile
return _quantile_unchecked(a, q, axis=axis, out=out,
File "lama_venv/lib/python3.8/site-packages/cupy/_statistics/order.py", line 212, in _quantile_unchecked
ap.sort(axis=axis)
File "cupy/_core/core.pyx", line 695, in cupy._core.core.ndarray.sort
File "cupy/_core/core.pyx", line 713, in cupy._core.core.ndarray.sort
File "cupy/_core/_routines_sorting.pyx", line 43, in cupy._core._routines_sorting._ndarray_sort
File "cupy/cuda/thrust.pyx", line 75, in cupy.cuda.thrust.sort
RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument
The version of RAPIDS is '21.06.01+2.g101fc0fda4'
Launching this on Ubuntu 20.04
I wonder if you can recreate it.
@RishatZagidullin What is the GPU that you ran into this error with?
GTX1050Ti
For me this error turned out to have to do with cuda 11+ toolkit not working properly on sm35 gpus. Current workaround is uninstalling cupy that gets installed with rapids then install cuda 10.2 (alongside with cuda 11.+) then install cupy-cuda10.2 while having rapids venv active.
This issue has been labeled inactive-90d
due to no recent activity in the past 90 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.
Please feel free to open a new issue if you have trouble with cuDF/cupy interoperability on the latest branch.
context: https://github.com/rapidsai/cuml/issues/4048#issuecomment-878747900