rapidsai / cudf

cuDF - GPU DataFrame Library
https://docs.rapids.ai/api/cudf/stable/
Apache License 2.0
8.42k stars 901 forks source link

RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument #8721

Closed pseudotensor closed 1 year ago

pseudotensor commented 3 years ago

context: https://github.com/rapidsai/cuml/issues/4048#issuecomment-878747900

import cudf
import cupy
import pandas as pd

X = pd.read_csv("df.csv")
y = X['target'].copy()

X = cudf.from_pandas(X).fillna(0.0)
y = cudf.from_pandas(y).fillna(0.0)

ar = cupy.asarray(y).flatten()
ar.sort()
Traceback (most recent call last):
  File "testradix.py", line 12, in <module>
    ar.sort()
  File "cupy/_core/core.pyx", line 695, in cupy._core.core.ndarray.sort
  File "cupy/_core/core.pyx", line 713, in cupy._core.core.ndarray.sort
  File "cupy/_core/_routines_sorting.pyx", line 43, in cupy._core._routines_sorting._ndarray_sort
  File "cupy/cuda/thrust.pyx", line 75, in cupy.cuda.thrust.sort
RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument
pseudotensor commented 3 years ago

But if I remove the fill, then no issues:

import cudf
import cupy
import pandas as pd

X = pd.read_csv("df.csv")
y = X['target'].copy()

X = cudf.from_pandas(X)
y = cudf.from_pandas(y)

ar = cupy.asarray(y).flatten()
ar.sort()

or if I remove the X from_pandas:

import cudf
import cupy
import pandas as pd

X = pd.read_csv("df.csv")
y = X['target'].copy()

#X = cudf.from_pandas(X).fillna(0.0)
y = cudf.from_pandas(y).fillna(0.0)

ar = cupy.asarray(y).flatten()
ar.sort()

also no problems

pseudotensor commented 3 years ago

This bug makes CUML stuff nearly useless.

pseudotensor commented 3 years ago
import cudf
import cupy
import pandas as pd

X = pd.read_csv("df.csv")
y = X['target'].copy()

X = cudf.from_pandas(X).astype('float32')
y = cudf.from_pandas(y).astype('float32')

ar = cupy.asarray(y).flatten()
ar.sort()

This also fails. So seems like any modification in cudf-land leads to failure.

harrism commented 3 years ago

Can you provide information about your environment, cuDF version, etc?

pseudotensor commented 3 years ago

Hi, Please see the CUML issue I referenced already in the first comment, where I provide that information: https://github.com/rapidsai/cuml/issues/4048#issue-942382933

beckernick commented 3 years ago

In the nightly as of 2021-07-12, I am unable to reproduce this issue on my system.

import cudf
import cupy
import pandas as pd

X = pd.read_csv("df.csv")
y = X['target']
X = X.drop('target', axis=1)

gpu_id = 0
cupy.cuda.Device(gpu_id).use()

X = cudf.from_pandas(X).fillna(0.0)
y = cudf.from_pandas(y).fillna(0.0)
ar = cupy.asarray(y).flatten()
ar.sort()
print(ar) # my addition
CUDA_VISIBLE_DEVICES="0" python radixtest.py
[0 0 0 ... 1 1 1]

./print_env.sh

Click here to see environment details

     **git***
     commit b0d86d2bfe8814cc7b717156b8b7fa9d5d2198bd (HEAD -> branch-21.08, origin/branch-21.08, origin/HEAD)
     Author: Michael Wang 
     Date:   Mon Jul 12 22:43:07 2021 -0700

     Add `datetime::is_leap_year` (#8711)

     Part 1 of #8677

     This PR adds `datetime::is_leap_year`. The function returns `true` for datetime column rows with leap year; `false` for rows with non leap years, and `null` for null rows.

     Authors:
     - Michael Wang (https://github.com/isVoid)

     Approvers:
     - Mark Harris (https://github.com/harrism)
     - Karthikeyan (https://github.com/karthikeyann)

     URL: https://github.com/rapidsai/cudf/pull/8711
     **git submodules***

     ***OS Information***
     DGX_NAME="DGX Server"
     DGX_PRETTY_NAME="NVIDIA DGX Server"
     DGX_SWBUILD_DATE="2020-03-04"
     DGX_SWBUILD_VERSION="4.4.0"
     DGX_COMMIT_ID="ee09ebc"
     DGX_PLATFORM="DGX Server for DGX-2"
     DGX_SERIAL_NUMBER="0574318000281"
     DISTRIB_ID=Ubuntu
     DISTRIB_RELEASE=18.04
     DISTRIB_CODENAME=bionic
     DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"
     NAME="Ubuntu"
     VERSION="18.04.4 LTS (Bionic Beaver)"
     ID=ubuntu
     ID_LIKE=debian
     PRETTY_NAME="Ubuntu 18.04.4 LTS"
     VERSION_ID="18.04"
     HOME_URL="https://www.ubuntu.com/"
     SUPPORT_URL="https://help.ubuntu.com/"
     BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
     PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
     VERSION_CODENAME=bionic
     UBUNTU_CODENAME=bionic
     Linux exp01 4.15.0-76-generic #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

     ***GPU Information***
     Tue Jul 13 06:37:14 2021
     +-----------------------------------------------------------------------------+
     | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
     |-------------------------------+----------------------+----------------------+
     | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
     | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
     |                               |                      |               MIG M. |
     |===============================+======================+======================|
     |   0  Tesla V100-SXM3...  On   | 00000000:34:00.0 Off |                    0 |
     | N/A   35C    P0    67W / 350W |    736MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   1  Tesla V100-SXM3...  On   | 00000000:36:00.0 Off |                    0 |
     | N/A   31C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   2  Tesla V100-SXM3...  On   | 00000000:39:00.0 Off |                    0 |
     | N/A   38C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   3  Tesla V100-SXM3...  On   | 00000000:3B:00.0 Off |                    0 |
     | N/A   38C    P0    52W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   4  Tesla V100-SXM3...  On   | 00000000:57:00.0 Off |                    0 |
     | N/A   31C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   5  Tesla V100-SXM3...  On   | 00000000:59:00.0 Off |                    0 |
     | N/A   37C    P0    52W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   6  Tesla V100-SXM3...  On   | 00000000:5C:00.0 Off |                    0 |
     | N/A   32C    P0    51W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   7  Tesla V100-SXM3...  On   | 00000000:5E:00.0 Off |                    0 |
     | N/A   37C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   8  Tesla V100-SXM3...  On   | 00000000:B7:00.0 Off |                    0 |
     | N/A   32C    P0    51W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |   9  Tesla V100-SXM3...  On   | 00000000:B9:00.0 Off |                    0 |
     | N/A   35C    P0    49W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  10  Tesla V100-SXM3...  On   | 00000000:BC:00.0 Off |                    0 |
     | N/A   36C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  11  Tesla V100-SXM3...  On   | 00000000:BE:00.0 Off |                    0 |
     | N/A   38C    P0    50W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  12  Tesla V100-SXM3...  On   | 00000000:E0:00.0 Off |                    0 |
     | N/A   32C    P0    48W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  13  Tesla V100-SXM3...  On   | 00000000:E2:00.0 Off |                    0 |
     | N/A   34C    P0    49W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  14  Tesla V100-SXM3...  On   | 00000000:E5:00.0 Off |                    0 |
     | N/A   38C    P0    53W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+
     |  15  Tesla V100-SXM3...  On   | 00000000:E7:00.0 Off |                    0 |
     | N/A   37C    P0    48W / 350W |      5MiB / 32510MiB |      0%      Default |
     |                               |                      |                  N/A |
     +-------------------------------+----------------------+----------------------+

     +-----------------------------------------------------------------------------+
     | Processes:                                                                  |
     |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
     |        ID   ID                                                   Usage      |
     |=============================================================================|
     |    0   N/A  N/A     74437      C   ...s/rapids-21.08/bin/python      729MiB |
     +-----------------------------------------------------------------------------+
     WARNING: infoROM is corrupted at gpu 0000:39:00.0
     WARNING: infoROM is corrupted at gpu 0000:5C:00.0

     ***CPU***
     Architecture:        x86_64
     CPU op-mode(s):      32-bit, 64-bit
     Byte Order:          Little Endian
     CPU(s):              96
     On-line CPU(s) list: 0-95
     Thread(s) per core:  2
     Core(s) per socket:  24
     Socket(s):           2
     NUMA node(s):        2
     Vendor ID:           GenuineIntel
     CPU family:          6
     Model:               85
     Model name:          Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
     Stepping:            4
     CPU MHz:             2045.141
     CPU max MHz:         3700.0000
     CPU min MHz:         1200.0000
     BogoMIPS:            5400.00
     Virtualization:      VT-x
     L1d cache:           32K
     L1i cache:           32K
     L2 cache:            1024K
     L3 cache:            33792K
     NUMA node0 CPU(s):   0-23,48-71
     NUMA node1 CPU(s):   24-47,72-95
     Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d

     ***CMake***
     /usr/bin/cmake
     cmake version 3.10.2

     CMake suite maintained and supported by Kitware (kitware.com/cmake).

     ***g++***
     /usr/bin/g++
     g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
     Copyright (C) 2017 Free Software Foundation, Inc.
     This is free software; see the source for copying conditions.  There is NO
     warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

     ***nvcc***
     /usr/local/cuda/bin/nvcc
     nvcc: NVIDIA (R) Cuda compiler driver
     Copyright (c) 2005-2021 NVIDIA Corporation
     Built on Sun_Feb_14_21:12:58_PST_2021
     Cuda compilation tools, release 11.2, V11.2.152
     Build cuda_11.2.r11.2/compiler.29618528_0

     ***Python***
     /raid/nicholasb/miniconda3/envs/rapids-21.08/bin/python
     Python 3.8.10

     ***Environment Variables***
     PATH                            : /home/nfs/nicholasb/bin:/home/nfs/nicholasb/.local/bin:/raid/nicholasb/google-cloud-sdk/bin:/raid/nicholasb/miniconda3/envs/rapids-21.08/bin:/raid/nicholasb/miniconda3/condabin:/usr/local/cuda/bin:/opt/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/nfs/nicholasb/miniconda3/bin:/usr/local/cuda/bin
     LD_LIBRARY_PATH                 :
     NUMBAPRO_NVVM                   :
     NUMBAPRO_LIBDEVICE              :
     CONDA_PREFIX                    : /raid/nicholasb/miniconda3/envs/rapids-21.08
     PYTHON_PATH                     :

     ***conda packages***
     /raid/nicholasb/miniconda3/condabin/conda
     # packages in environment at /raid/nicholasb/miniconda3/envs/rapids-21.08:
     #
     # Name                    Version                   Build  Channel
     _libgcc_mutex             0.1                 conda_forge    conda-forge
     _openmp_mutex             4.5                       1_gnu    conda-forge
     abseil-cpp                20210324.2           h9c3ff4c_0    conda-forge
     aiohttp                   3.7.4.post0      py38h497a2fe_0    conda-forge
     anyio                     3.2.1            py38h578d9bd_0    conda-forge
     appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge
     argon2-cffi               20.1.0           py38h497a2fe_2    conda-forge
     arrow-cpp                 4.0.1           py38hf0991f3_4_cuda    conda-forge
     arrow-cpp-proc            3.0.0                      cuda    conda-forge
     async-timeout             3.0.1                   py_1000    conda-forge
     async_generator           1.10                       py_0    conda-forge
     attrs                     21.2.0             pyhd8ed1ab_0    conda-forge
     aws-c-cal                 0.5.11               h95a6274_0    conda-forge
     aws-c-common              0.6.2                h7f98852_0    conda-forge
     aws-c-event-stream        0.2.7               h3541f99_13    conda-forge
     aws-c-io                  0.10.5               hfb6a706_0    conda-forge
     aws-checksums             0.1.11               ha31a3da_7    conda-forge
     aws-sdk-cpp               1.8.186              hb4091e7_3    conda-forge
     babel                     2.9.1              pyh44b312d_0    conda-forge
     backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
     backports                 1.0                        py_2    conda-forge
     backports.functools_lru_cache 1.6.4              pyhd8ed1ab_0    conda-forge
     bleach                    3.3.0              pyh44b312d_0    conda-forge
     blosc                     1.21.0               h9c3ff4c_0    conda-forge
     bokeh                     2.3.3            py38h578d9bd_0    conda-forge
     boost                     1.74.0           py38hc10631b_3    conda-forge
     boost-cpp                 1.74.0               h312852a_4    conda-forge
     brotli                    1.0.9                h7f98852_5    conda-forge
     brotli-bin                1.0.9                h7f98852_5    conda-forge
     brotlipy                  0.7.0           py38h497a2fe_1001    conda-forge
     brunsli                   0.1                  h9c3ff4c_0    conda-forge
     bzip2                     1.0.8                h7f98852_4    conda-forge
     c-ares                    1.17.1               h7f98852_1    conda-forge
     ca-certificates           2021.5.30            ha878542_0    conda-forge
     cachetools                4.2.2              pyhd8ed1ab_0    conda-forge
     cairo                     1.16.0            h6cf1ce9_1008    conda-forge
     certifi                   2021.5.30        py38h578d9bd_0    conda-forge
     cffi                      1.14.6           py38ha65f79e_0    conda-forge
     cfitsio                   3.470                hb418390_7    conda-forge
     chardet                   4.0.0            py38h578d9bd_1    conda-forge
     charls                    2.2.0                h9c3ff4c_0    conda-forge
     click                     7.1.2              pyh9f0ad1d_0    conda-forge
     click-plugins             1.1.1                      py_0    conda-forge
     cligj                     0.7.2              pyhd8ed1ab_0    conda-forge
     cloudpickle               1.6.0                      py_0    conda-forge
     colorcet                  2.0.6              pyhd8ed1ab_0    conda-forge
     cryptography              3.4.7            py38ha5dfef3_0    conda-forge
     cucim                     21.08.00a210712 cuda_11.2_py38_g8da6ca9_11    rapidsai-nightly
     cudatoolkit               11.2.72              h2bc3f7f_0    nvidia
     cudf                      21.08.00a210711 cuda_11.2_py38_g8320a15cda_263    rapidsai-nightly
     cudf_kafka                21.08.00a210711 py38_g8320a15cda_263    rapidsai-nightly
     cugraph                   21.08.00a210712 py38_g1a636029_76    rapidsai-nightly
     cuml                      21.08.00a210712 cuda11.2_py38_gc9abba1a4_113    rapidsai-nightly
     cupy                      9.0.0            py38ha69542f_0    conda-forge
     curl                      7.77.0               hea6ffbf_0    conda-forge
     cusignal                  21.08.00a210712 py37_gb704464_21    rapidsai-nightly
     cuspatial                 21.08.00a210712 py38_g8c31c2c_22    rapidsai-nightly
     custreamz                 21.08.00a210711 py38_g8320a15cda_263    rapidsai-nightly
     cuxfilter                 21.08.00a210712 py38_g652bf1c_16    rapidsai-nightly
     cycler                    0.10.0                     py_2    conda-forge
     cyrus-sasl                2.1.27               h230043b_2    conda-forge
     cytoolz                   0.11.0           py38h497a2fe_3    conda-forge
     dask                      2021.7.0           pyhd8ed1ab_0    conda-forge
     dask-core                 2021.7.0           pyhd8ed1ab_0    conda-forge
     dask-cuda                 21.08.00a210712         py38_33    rapidsai-nightly
     dask-cudf                 21.08.00a210711 py38_g8320a15cda_263    rapidsai-nightly
     datashader                0.11.1             pyh9f0ad1d_0    conda-forge
     datashape                 0.5.4                      py_1    conda-forge
     debugpy                   1.3.0            py38h709712a_0    conda-forge
     decorator                 4.4.2                      py_0    conda-forge
     defusedxml                0.7.1              pyhd8ed1ab_0    conda-forge
     distributed               2021.7.0         py38h578d9bd_0    conda-forge
     dlpack                    0.5                  h9c3ff4c_0    conda-forge
     entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
     expat                     2.4.1                h9c3ff4c_0    conda-forge
     faiss-proc                1.0.0                      cuda    conda-forge
     fastavro                  1.4.2            py38h497a2fe_0    conda-forge
     fastrlock                 0.6              py38h709712a_1    conda-forge
     fiona                     1.8.20           py38hdb5a769_0    conda-forge
     fontconfig                2.13.1            hba837de_1005    conda-forge
     freetype                  2.10.4               h0708190_1    conda-forge
     freexl                    1.0.6                h7f98852_0    conda-forge
     fsspec                    2021.6.1           pyhd8ed1ab_0    conda-forge
     gdal                      3.2.2            py38h507a4fd_7    conda-forge
     geopandas                 0.9.0              pyhd8ed1ab_1    conda-forge
     geopandas-base            0.9.0              pyhd8ed1ab_1    conda-forge
     geos                      3.9.1                h9c3ff4c_2    conda-forge
     geotiff                   1.6.0                h4f31c25_6    conda-forge
     gettext                   0.19.8.1          h0b5b191_1005    conda-forge
     gflags                    2.2.2             he1b5a44_1004    conda-forge
     giflib                    5.2.1                h36c2ea0_2    conda-forge
     glog                      0.5.0                h48cff8f_0    conda-forge
     grpc-cpp                  1.38.1               h36ce80c_0    conda-forge
     hdf4                      4.2.15               h10796ff_3    conda-forge
     hdf5                      1.10.6          nompi_h6a2412b_1114    conda-forge
     heapdict                  1.0.1                      py_0    conda-forge
     icu                       68.1                 h58526e2_0    conda-forge
     idna                      2.10               pyh9f0ad1d_0    conda-forge
     imagecodecs               2021.6.8         py38hf154af1_0    conda-forge
     imageio                   2.9.0                      py_0    conda-forge
     importlib-metadata        4.6.1            py38h578d9bd_0    conda-forge
     ipykernel                 6.0.1            py38hd0cf306_0    conda-forge
     ipython                   7.25.0           py38hd0cf306_1    conda-forge
     ipython_genutils          0.2.0                      py_1    conda-forge
     ipywidgets                7.6.3              pyhd3deb0d_0    conda-forge
     jbig                      2.1               h7f98852_2003    conda-forge
     jedi                      0.18.0           py38h578d9bd_2    conda-forge
     jinja2                    3.0.1              pyhd8ed1ab_0    conda-forge
     joblib                    1.0.1              pyhd8ed1ab_0    conda-forge
     jpeg                      9d                   h36c2ea0_0    conda-forge
     json-c                    0.15                 h98cffda_0    conda-forge
     json5                     0.9.5              pyh9f0ad1d_0    conda-forge
     jsonschema                3.2.0              pyhd8ed1ab_3    conda-forge
     jupyter-server-proxy      3.1.0              pyhd8ed1ab_0    conda-forge
     jupyter_client            6.1.12             pyhd8ed1ab_0    conda-forge
     jupyter_core              4.7.1            py38h578d9bd_0    conda-forge
     jupyter_server            1.9.0              pyhd8ed1ab_0    conda-forge
     jupyterlab                3.0.16             pyhd8ed1ab_0    conda-forge
     jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
     jupyterlab_server         2.6.1              pyhd8ed1ab_0    conda-forge
     jupyterlab_widgets        1.0.0              pyhd8ed1ab_1    conda-forge
     jxrlib                    1.1                  h7f98852_2    conda-forge
     kealib                    1.4.14               hcc255d8_2    conda-forge
     kiwisolver                1.3.1            py38h1fd1430_1    conda-forge
     krb5                      1.19.1               hcc1bbae_0    conda-forge
     lcms2                     2.12                 hddcbb42_0    conda-forge
     ld_impl_linux-64          2.36.1               hea4e1c9_1    conda-forge
     lerc                      2.2.1                h9c3ff4c_0    conda-forge
     libaec                    1.0.5                h9c3ff4c_0    conda-forge
     libblas                   3.9.0                9_openblas    conda-forge
     libbrotlicommon           1.0.9                h7f98852_5    conda-forge
     libbrotlidec              1.0.9                h7f98852_5    conda-forge
     libbrotlienc              1.0.9                h7f98852_5    conda-forge
     libcblas                  3.9.0                9_openblas    conda-forge
     libcucim                  21.08.00a210712 cuda11.2_g8da6ca9_11    rapidsai-nightly
     libcudf                   21.08.00a210712 cuda11.2_g0b9ea0176c_264    rapidsai-nightly
     libcudf_kafka             21.08.00a210711 g8320a15cda_263    rapidsai-nightly
     libcugraph                21.08.00a210712 cuda11.2_g1a636029_76    rapidsai-nightly
     libcuml                   21.08.00a210712 cuda11.2_gc9abba1a4_113    rapidsai-nightly
     libcumlprims              21.08.00a210605 cuda11.2_g8d4e6b0_2    rapidsai-nightly
     libcurl                   7.77.0               h2574ce0_0    conda-forge
     libcuspatial              21.08.00a210712 cuda11.2_g8c31c2c_22    rapidsai-nightly
     libdap4                   3.20.6               hd7c4107_2    conda-forge
     libdeflate                1.7                  h7f98852_5    conda-forge
     libedit                   3.1.20191231         he28a2e2_2    conda-forge
     libev                     4.33                 h516909a_1    conda-forge
     libevent                  2.1.10               hcdb4288_3    conda-forge
     libfaiss                  1.7.0           cuda112h5bea7ad_8_cuda    conda-forge
     libffi                    3.3                  h58526e2_2    conda-forge
     libgcc-ng                 9.3.0               h2828fa1_19    conda-forge
     libgcrypt                 1.9.3                h7f98852_1    conda-forge
     libgdal                   3.2.2                h8f005ca_7    conda-forge
     libgfortran-ng            9.3.0               hff62375_19    conda-forge
     libgfortran5              9.3.0               hff62375_19    conda-forge
     libglib                   2.68.3               h3e27bee_0    conda-forge
     libgomp                   9.3.0               h2828fa1_19    conda-forge
     libgpg-error              1.42                 h9c3ff4c_0    conda-forge
     libgsasl                  1.8.0                         2    conda-forge
     libhwloc                  2.3.0                h5e5b7d1_1    conda-forge
     libiconv                  1.16                 h516909a_0    conda-forge
     libkml                    1.3.0             h238a007_1013    conda-forge
     liblapack                 3.9.0                9_openblas    conda-forge
     libllvm10                 10.0.1               he513fc3_3    conda-forge
     libnetcdf                 4.8.0           nompi_hcd642e3_103    conda-forge
     libnghttp2                1.43.0               h812cca2_0    conda-forge
     libntlm                   1.4               h7f98852_1002    conda-forge
     libopenblas               0.3.15          pthreads_h8fe5266_1    conda-forge
     libpng                    1.6.37               h21135ba_2    conda-forge
     libpq                     13.3                 hd57d9b9_0    conda-forge
     libprotobuf               3.16.0               h780b84a_0    conda-forge
     librdkafka                1.6.1                hc49e61c_1    conda-forge
     librmm                    21.08.00a210712 cuda11.2_geb2b991_34    rapidsai-nightly
     librttopo                 1.1.0                h1185371_6    conda-forge
     libsodium                 1.0.18               h36c2ea0_1    conda-forge
     libspatialindex           1.9.3                h9c3ff4c_3    conda-forge
     libspatialite             5.0.1                h8694cbe_5    conda-forge
     libssh2                   1.9.0                ha56f1ee_6    conda-forge
     libstdcxx-ng              9.3.0               h6de172a_19    conda-forge
     libthrift                 0.14.2               he6d91bd_1    conda-forge
     libtiff                   4.3.0                hf544144_1    conda-forge
     libutf8proc               2.6.1                h7f98852_0    conda-forge
     libuuid                   2.32.1            h7f98852_1000    conda-forge
     libuv                     1.41.1               h7f98852_0    conda-forge
     libwebp                   1.2.0                h3452ae3_0    conda-forge
     libwebp-base              1.2.0                h7f98852_2    conda-forge
     libxcb                    1.13              h7f98852_1003    conda-forge
     libxgboost                1.4.2dev.rapidsai21.08      cuda11.2_0    rapidsai-nightly
     libxml2                   2.9.12               h72842e0_0    conda-forge
     libzip                    1.8.0                h4de3113_0    conda-forge
     libzopfli                 1.0.3                h9c3ff4c_0    conda-forge
     llvmlite                  0.36.0           py38h4630a5e_0    conda-forge
     locket                    0.2.0                      py_2    conda-forge
     lz4-c                     1.9.3                h9c3ff4c_0    conda-forge
     mapclassify               2.4.2              pyhd8ed1ab_0    conda-forge
     markdown                  3.3.4              pyhd8ed1ab_0    conda-forge
     markupsafe                2.0.1            py38h497a2fe_0    conda-forge
     matplotlib-base           3.4.2            py38hcc49a3a_0    conda-forge
     matplotlib-inline         0.1.2              pyhd8ed1ab_2    conda-forge
     mistune                   0.8.4           py38h497a2fe_1004    conda-forge
     msgpack-python            1.0.2            py38h1fd1430_1    conda-forge
     multidict                 5.1.0            py38h497a2fe_1    conda-forge
     multipledispatch          0.6.0                      py_0    conda-forge
     munch                     2.5.0                      py_0    conda-forge
     nbclassic                 0.3.1              pyhd8ed1ab_1    conda-forge
     nbclient                  0.5.3              pyhd8ed1ab_0    conda-forge
     nbconvert                 6.1.0            py38h578d9bd_0    conda-forge
     nbformat                  5.1.3              pyhd8ed1ab_0    conda-forge
     nccl                      2.10.3.1             hdc17891_0    conda-forge
     ncurses                   6.2                  h58526e2_4    conda-forge
     nest-asyncio              1.5.1              pyhd8ed1ab_0    conda-forge
     networkx                  2.6.1              pyhd8ed1ab_1    conda-forge
     nodejs                    14.17.1              h92b4a50_1    conda-forge
     notebook                  6.4.0              pyha770c72_0    conda-forge
     numba                     0.53.1           py38h8b71fd7_1    conda-forge
     numpy                     1.21.0           py38h9894fe3_0    conda-forge
     nvtx                      0.2.3            py38h497a2fe_0    conda-forge
     olefile                   0.46               pyh9f0ad1d_1    conda-forge
     openjdk                   8.0.282              h7f98852_0    conda-forge
     openjpeg                  2.4.0                hb52868f_1    conda-forge
     openssl                   1.1.1k               h7f98852_0    conda-forge
     orc                       1.6.9                h58a87f1_0    conda-forge
     packaging                 21.0               pyhd8ed1ab_0    conda-forge
     pandas                    1.2.5            py38h1abd341_0    conda-forge
     pandoc                    2.14.0.3             h7f98852_0    conda-forge
     pandocfilters             1.4.2                      py_1    conda-forge
     panel                     0.11.3             pyhd8ed1ab_0    conda-forge
     param                     1.11.1             pyh6c4a22f_0    conda-forge
     parquet-cpp               1.5.1                         2    conda-forge
     parso                     0.8.2              pyhd8ed1ab_0    conda-forge
     partd                     1.2.0              pyhd8ed1ab_0    conda-forge
     pcre                      8.45                 h9c3ff4c_0    conda-forge
     pexpect                   4.8.0              pyh9f0ad1d_2    conda-forge
     pickleshare               0.7.5                   py_1003    conda-forge
     pillow                    8.3.1            py38h8e6f84c_0    conda-forge
     pip                       21.1.3             pyhd8ed1ab_0    conda-forge
     pixman                    0.40.0               h36c2ea0_0    conda-forge
     pooch                     1.4.0              pyhd8ed1ab_0    conda-forge
     poppler                   21.03.0              h93df280_0    conda-forge
     poppler-data              0.4.10                        0    conda-forge
     postgresql                13.3                 h2510834_0    conda-forge
     proj                      8.0.1                h277dcde_0    conda-forge
     prometheus_client         0.11.0             pyhd8ed1ab_0    conda-forge
     prompt-toolkit            3.0.19             pyha770c72_0    conda-forge
     protobuf                  3.16.0           py38h709712a_0    conda-forge
     psutil                    5.8.0            py38h497a2fe_1    conda-forge
     pthread-stubs             0.4               h36c2ea0_1001    conda-forge
     ptyprocess                0.7.0              pyhd3deb0d_0    conda-forge
     py-xgboost                1.4.2dev.rapidsai21.08  cuda11.2py38_0    rapidsai-nightly
     py4j                      0.10.9             pyh9f0ad1d_0    conda-forge
     pyarrow                   4.0.1           py38hb53058b_4_cuda    conda-forge
     pycparser                 2.20               pyh9f0ad1d_2    conda-forge
     pyct                      0.4.6                      py_0    conda-forge
     pyct-core                 0.4.6                      py_0    conda-forge
     pydeck                    0.5.0              pyh9f0ad1d_0    conda-forge
     pyee                      7.0.4              pyh9f0ad1d_0    conda-forge
     pygments                  2.9.0              pyhd8ed1ab_0    conda-forge
     pynvml                    11.0.0             pyhd8ed1ab_0    conda-forge
     pyopenssl                 20.0.1             pyhd8ed1ab_0    conda-forge
     pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
     pyppeteer                 0.2.2                      py_1    conda-forge
     pyproj                    3.1.0            py38h03a1999_3    conda-forge
     pyrsistent                0.17.3           py38h497a2fe_2    conda-forge
     pysocks                   1.7.1            py38h578d9bd_3    conda-forge
     pyspark                   3.1.2              pyh6c4a22f_0    conda-forge
     python                    3.8.10          h49503c6_1_cpython    conda-forge
     python-confluent-kafka    1.6.0            py38h497a2fe_1    conda-forge
     python-dateutil           2.8.1                      py_0    conda-forge
     python_abi                3.8                      2_cp38    conda-forge
     pytz                      2021.1             pyhd8ed1ab_0    conda-forge
     pyviz_comms               2.1.0              pyhd8ed1ab_0    conda-forge
     pywavelets                1.1.1            py38h5c078b8_3    conda-forge
     pyyaml                    5.4.1            py38h497a2fe_0    conda-forge
     pyzmq                     22.1.0           py38h2035c66_0    conda-forge
     rapids                    21.08.00a210709 cuda11.2_py38_g6430beb_23    rapidsai-nightly
     rapids-xgboost            21.08.00a210709 cuda11.2_py38_g6430beb_23    rapidsai-nightly
     re2                       2021.06.01           h9c3ff4c_0    conda-forge
     readline                  8.1                  h46c0cb4_0    conda-forge
     requests                  2.25.1             pyhd3deb0d_0    conda-forge
     requests-unixsocket       0.2.0                      py_0    conda-forge
     rmm                       21.08.00a210712 cuda_11.2_py38_geb2b991_34    rapidsai-nightly
     rtree                     0.9.7            py38h02d302b_1    conda-forge
     s2n                       1.0.10               h9b69904_0    conda-forge
     scikit-image              0.18.1           py38h51da96c_0    conda-forge
     scikit-learn              0.24.2           py38hdc147b9_0    conda-forge
     scipy                     1.7.0            py38h7b17777_0    conda-forge
     send2trash                1.7.1              pyhd8ed1ab_0    conda-forge
     setuptools                49.6.0           py38h578d9bd_3    conda-forge
     shapely                   1.7.1            py38haeee4fe_5    conda-forge
     simpervisor               0.4                pyhd8ed1ab_0    conda-forge
     six                       1.16.0             pyh6c4a22f_0    conda-forge
     snappy                    1.1.8                he1b5a44_3    conda-forge
     sniffio                   1.2.0            py38h578d9bd_1    conda-forge
     sortedcontainers          2.4.0              pyhd8ed1ab_0    conda-forge
     spdlog                    1.8.5                h4bd325d_0    conda-forge
     sqlite                    3.36.0               h9cd32fc_0    conda-forge
     streamz                   0.6.2              pyh44b312d_0    conda-forge
     tblib                     1.7.0              pyhd8ed1ab_0    conda-forge
     terminado                 0.10.1           py38h578d9bd_0    conda-forge
     testpath                  0.5.0              pyhd8ed1ab_0    conda-forge
     threadpoolctl             2.2.0              pyh8a188c0_0    conda-forge
     tifffile                  2021.7.2           pyhd8ed1ab_0    conda-forge
     tiledb                    2.3.1                he87e0bf_0    conda-forge
     tk                        8.6.10               h21135ba_1    conda-forge
     toolz                     0.11.1                     py_0    conda-forge
     tornado                   6.1              py38h497a2fe_1    conda-forge
     tqdm                      4.61.2             pyhd8ed1ab_1    conda-forge
     traitlets                 5.0.5                      py_0    conda-forge
     treelite                  1.3.0            py38hd08a91b_0    conda-forge
     treelite-runtime          1.3.0                    pypi_0    pypi
     typing-extensions         3.10.0.0             hd8ed1ab_0    conda-forge
     typing_extensions         3.10.0.0           pyha770c72_0    conda-forge
     tzcode                    2021a                h7f98852_2    conda-forge
     tzdata                    2021a                he74cb21_1    conda-forge
     ucx                       1.9.0+gcd9efd3       cuda11.2_0    rapidsai-nightly
     ucx-proc                  1.0.0                       gpu    rapidsai-nightly
     ucx-py                    0.21.0a210712   py38_gcd9efd3_29    rapidsai-nightly
     urllib3                   1.26.6             pyhd8ed1ab_0    conda-forge
     wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
     webencodings              0.5.1                      py_1    conda-forge
     websocket-client          0.57.0           py38h578d9bd_4    conda-forge
     websockets                8.1              py38h497a2fe_3    conda-forge
     wheel                     0.36.2             pyhd3deb0d_0    conda-forge
     widgetsnbextension        3.5.1            py38h578d9bd_4    conda-forge
     xarray                    0.18.2             pyhd8ed1ab_0    conda-forge
     xerces-c                  3.2.3                h9d8b166_2    conda-forge
     xgboost                   1.4.2dev.rapidsai21.08  cuda11.2py38_0    rapidsai-nightly
     xorg-kbproto              1.0.7             h7f98852_1002    conda-forge
     xorg-libice               1.0.10               h7f98852_0    conda-forge
     xorg-libsm                1.2.3             hd9c2040_1000    conda-forge
     xorg-libx11               1.7.2                h7f98852_0    conda-forge
     xorg-libxau               1.0.9                h7f98852_0    conda-forge
     xorg-libxdmcp             1.1.3                h7f98852_0    conda-forge
     xorg-libxext              1.3.4                h7f98852_1    conda-forge
     xorg-libxrender           0.9.10            h7f98852_1003    conda-forge
     xorg-renderproto          0.11.1            h7f98852_1002    conda-forge
     xorg-xextproto            7.3.0             h7f98852_1002    conda-forge
     xorg-xproto               7.0.31            h7f98852_1007    conda-forge
     xz                        5.2.5                h516909a_1    conda-forge
     yaml                      0.2.5                h516909a_0    conda-forge
     yarl                      1.6.3            py38h497a2fe_2    conda-forge
     zeromq                    4.3.4                h9c3ff4c_0    conda-forge
     zfp                       0.5.5                h9c3ff4c_5    conda-forge
     zict                      2.0.0                      py_0    conda-forge
     zipp                      3.5.0              pyhd8ed1ab_0    conda-forge
     zlib                      1.2.11            h516909a_1010    conda-forge
     zstd                      1.5.0                ha95c52a_0    conda-forge

pseudotensor commented 3 years ago

It doesn't happen on my 1 GPU system, only my 2 GPU 1080ti system, as I explained in the original cuml issue. So perhaps having so many GPUs also leads to differences.

pseudotensor commented 3 years ago

This is on 210713 nightly, same problem:

https://github.com/rapidsai/cudf/issues/8721#issuecomment-878792961

still fails.

And something like this still fails:

import cudf
import cupy
import pandas as pd
import numpy as np

import pickle
X, y = pickle.load(open("doo.pkl", "rb"))

gpu_id = 0
cupy.cuda.Device(gpu_id).use()

X = cudf.from_pandas(X.to_pandas()).fillna(0.0)
y = cudf.from_pandas(pd.Series(y)).fillna(0.0)

from cuml.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X, y)

doo.pkl.zip

Traceback (most recent call last):
  File "testradix10.py", line 18, in <module>
    model.fit(X, y)
  File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cuml/internals/api_decorators.py", line 409, in inner_with_setters
    return func(*args, **kwargs)
  File "cuml/ensemble/randomforestclassifier.pyx", line 456, in cuml.ensemble.randomforestclassifier.RandomForestClassifier.fit
  File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cuml/internals/api_decorators.py", line 567, in inner_set
    ret_val = func(*args, **kwargs)
  File "cuml/ensemble/randomforest_common.pyx", line 263, in cuml.ensemble.randomforest_common.BaseRandomForestModel._dataset_setup_for_fit
  File "/home/jon/minicondadai_py38/lib/python3.8/site-packages/cupy/_manipulation/add_remove.py", line 179, in unique
    ar.sort()
  File "cupy/_core/core.pyx", line 695, in cupy._core.core.ndarray.sort
  File "cupy/_core/core.pyx", line 713, in cupy._core.core.ndarray.sort
  File "cupy/_core/_routines_sorting.pyx", line 43, in cupy._core._routines_sorting._ndarray_sort
  File "cupy/cuda/thrust.pyx", line 75, in cupy.cuda.thrust.sort
RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument

I'm giving more examples in case one of them works for you.

beckernick commented 3 years ago

Do you by chance have an example that doesn't depend on datatable?

We have not been able to reproduce this behavior on V100 or P100 machines (cc @galipremsagar )

RishatZagidullin commented 3 years ago

Hello!

I kind of have the same issue. At least the error seems to be similar. But with dask_cudf. Since dask_cudf is located in this repository I hope that I'm allowed to post this here:

import numpy as np
import pandas as pd
import cudf
import dask_cudf

def ginic_gpu(actual_pred):
    #this is not a reliable method to find `n`
    n = actual_pred.divisions[-1]+1
    a_s = actual_pred.set_index(actual_pred.columns[-1])[actual_pred.columns[0]]
    a_c = a_s.cumsum()
    gini_sum = a_c.sum() / a_s.sum() - (n+1) / 2.0
    gini_sum = gini_sum.compute()
    return gini_sum / n

if __name__ == "__main__":
    np_data = np.random.random((100000,2))
    pd_data = pd.DataFrame(data=np_data)
    cudf_data = cudf.from_pandas(pd_data)
    dask_cudf_data = dask_cudf.from_cudf(cudf_data, npartitions=4)

    print(ginic_gpu(dask_cudf_data))

The error occurs only for sufficiently large sizes of the dataset.

Traceback (most recent call last):
  File "radix_sort_bug.py", line 21, in <module>
    print(ginic_gpu(dask_cudf_data))
  File "radix_sort_bug.py", line 9, in ginic_gpu
    a_s = actual_pred.set_index(actual_pred.columns[-1])[actual_pred.columns[0]]
  File "lama_venv/lib/python3.8/site-packages/dask_cudf/core.py", line 237, in set_index
    return super().set_index(
  File "lama_venv/lib/python3.8/site-packages/dask/dataframe/core.py", line 4131, in set_index
    return set_index(
  File "lama_venv/lib/python3.8/site-packages/dask/dataframe/shuffle.py", line 162, in set_index
    divisions, mins, maxes = _calculate_divisions(
  File "lama_venv/lib/python3.8/site-packages/dask/dataframe/shuffle.py", line 35, in _calculate_divisions
    divisions, sizes, mins, maxes = base.compute(divisions, sizes, mins, maxes)
  File "lama_venv/lib/python3.8/site-packages/dask/base.py", line 567, in compute
    results = schedule(dsk, keys, **kwargs)
  File "lama_venv/lib/python3.8/site-packages/dask/threaded.py", line 79, in get
    results = get_async(
  File "ama_venv/lib/python3.8/site-packages/dask/local.py", line 514, in get_async
    raise_exception(exc, tb)
  File "lama_venv/lib/python3.8/site-packages/dask/local.py", line 325, in reraise
    raise exc
  File "lama_venv/lib/python3.8/site-packages/dask/local.py", line 223, in execute_task
    result = _execute_task(task, data)
  File "lama_venv/lib/python3.8/site-packages/dask/core.py", line 121, in _execute_task
    return func(*(_execute_task(a, cache) for a in args))
  File "lama_venv/lib/python3.8/site-packages/dask/dataframe/partitionquantiles.py", line 420, in percentiles_summary
    vals, n = _percentile(data, qs, interpolation=interpolation)
  File "lama_venv/lib/python3.8/site-packages/dask/array/percentile.py", line 34, in _percentile
    return np.percentile(a, q, interpolation=interpolation), n
  File "<__array_function__ internals>", line 5, in percentile
  File "cupy/_core/core.pyx", line 1488, in cupy._core.core.ndarray.__array_function__
  File "lama_venv/lib/python3.8/site-packages/cupy/_statistics/order.py", line 308, in percentile
    return _quantile_unchecked(a, q, axis=axis, out=out,
  File "lama_venv/lib/python3.8/site-packages/cupy/_statistics/order.py", line 212, in _quantile_unchecked
    ap.sort(axis=axis)
  File "cupy/_core/core.pyx", line 695, in cupy._core.core.ndarray.sort
  File "cupy/_core/core.pyx", line 713, in cupy._core.core.ndarray.sort
  File "cupy/_core/_routines_sorting.pyx", line 43, in cupy._core._routines_sorting._ndarray_sort
  File "cupy/cuda/thrust.pyx", line 75, in cupy.cuda.thrust.sort
RuntimeError: radix_sort: failed on 2nd step: cudaErrorInvalidValue: invalid argument

The version of RAPIDS is '21.06.01+2.g101fc0fda4' Launching this on Ubuntu 20.04

I wonder if you can recreate it.

galipremsagar commented 3 years ago

@RishatZagidullin What is the GPU that you ran into this error with?

RishatZagidullin commented 3 years ago

GTX1050Ti

RishatZagidullin commented 3 years ago

For me this error turned out to have to do with cuda 11+ toolkit not working properly on sm35 gpus. Current workaround is uninstalling cupy that gets installed with rapids then install cuda 10.2 (alongside with cuda 11.+) then install cupy-cuda10.2 while having rapids venv active.

github-actions[bot] commented 2 years ago

This issue has been labeled inactive-90d due to no recent activity in the past 90 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.

GregoryKimball commented 1 year ago

Please feel free to open a new issue if you have trouble with cuDF/cupy interoperability on the latest branch.