Open higgteil opened 3 years ago
Could you try the following and let us know if the install fails?
conda create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
For reference, this was taken from the RAPIDS release selector tool which helps generate the exact install command required for your system. If that doesn't work, please do let us know and we can look into it further.
Could you try the following and let us know if the install fails?
conda create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
For reference, this was taken from the RAPIDS release selector tool which helps generate the exact install command required for your system. If that doesn't work, please do let us know and we can look into it further.
Dear wphicks,
thanks for your answer, I ran the command, but unfortunately it didn't work:
$ conda create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): | (base) $
@higgteil that message does not imply that the install has failed, it's just the conda solver working which can take quite a while sometimes. I would recommend using mamba to speed up things, essentially doing this:
$ conda install -c conda-forge mamba
$ mamba create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
If that doesn't work, then at least it should be way faster at finding the conflict/issue and printing something to help us triage the issue. Thanks!
@higgteil that message does not imply that the install has failed, it's just the conda solver working which can take quite a while sometimes. I would recommend using mamba to speed up things, essentially doing this:
$ conda install -c conda-forge mamba $ mamba create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
If that doesn't work, then at least it should be way faster at finding the conflict/issue and printing something to help us triage the issue. Thanks!
You're right! Now, it seems to download and install all the packages, but the verification at the end is terminated with a kill -
Here is the printout from your code:
(base)$ mamba create -n rapids-21.10 -c rapidsai -c nvidia -c conda-forge cuml=21.10 python=3.7 cudatoolkit=11.0
__ __ __ __
/ \ / \ / \ / \
/ \/ \/ \/ \
███████████████/ /██/ /██/ /██/ /████████████████████████
/ / \ / \ / \ / \ \____
/ / \_/ \_/ \_/ \ o \__,
/ _/ \_____/ `
|/
███╗ ███╗ █████╗ ███╗ ███╗██████╗ █████╗
████╗ ████║██╔══██╗████╗ ████║██╔══██╗██╔══██╗
██╔████╔██║███████║██╔████╔██║██████╔╝███████║
██║╚██╔╝██║██╔══██║██║╚██╔╝██║██╔══██╗██╔══██║
██║ ╚═╝ ██║██║ ██║██║ ╚═╝ ██║██████╔╝██║ ██║
╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝
mamba (0.15.3) supported by @QuantStack
GitHub: https://github.com/mamba-org/mamba
Twitter: https://twitter.com/QuantStack
█████████████████████████████████████████████████████████████
Looking for: ['cuml=21.10', 'python=3.7', 'cudatoolkit=11.0']
nvidia/linux-64 [====================] (00m:00s) Done
rapidsai/noarch [====================] (00m:00s) Done
nvidia/noarch [====================] (00m:00s) Done
rapidsai/linux-64 [====================] (00m:00s) Done
default/linux-64 [====================] (00m:00s) Done
pkgs/main/linux-64 [====================] (00m:00s) Done
pkgs/r/linux-64 [====================] (00m:00s) Done
default/noarch [====================] (00m:00s) Done
pkgs/r/noarch [====================] (00m:00s) Done
pkgs/main/noarch [====================] (00m:00s) Done
conda-forge/noarch [====================] (00m:01s) Done
bioconda/linux-64 [====================] (00m:00s) Done
bioconda/noarch [====================] (00m:01s) Done
conda-forge/linux-64 [====================] (00m:05s) Done
Transaction
Prefix: /fast/users/harp/work/miniconda/envs/rapids-21.10
Updating specs:
- cuml=21.10
- python=3.7
- cudatoolkit=11.0
Package Version Build Channel Size
─────────────────────────────────────────────────────────────────────────────────────────────────────────
Install:
─────────────────────────────────────────────────────────────────────────────────────────────────────────
+ _libgcc_mutex 0.1 conda_forge conda-forge/linux-64 Cached
+ _openmp_mutex 4.5 1_gnu conda-forge/linux-64 Cached
+ abseil-cpp 20210324.2 h9c3ff4c_0 conda-forge/linux-64 1010 KB
+ arrow-cpp 5.0.0 py37h38eb46f_11_cuda conda-forge/linux-64 23 MB
+ arrow-cpp-proc 3.0.0 cuda conda-forge/linux-64 24 KB
+ aws-c-auth 0.6.4 h66ccdbb_3 conda-forge/linux-64 99 KB
+ aws-c-cal 0.5.12 hf5774b0_2 conda-forge/linux-64 36 KB
+ aws-c-common 0.6.11 h7f98852_0 conda-forge/linux-64 174 KB
+ aws-c-compression 0.2.14 hcbdb60a_2 conda-forge/linux-64 16 KB
+ aws-c-event-stream 0.2.7 hb3c4c74_24 conda-forge/linux-64 47 KB
+ aws-c-http 0.6.6 h0021954_1 conda-forge/linux-64 170 KB
+ aws-c-io 0.10.9 h14fba84_3 conda-forge/linux-64 121 KB
+ aws-c-mqtt 0.7.8 h8df633b_2 conda-forge/linux-64 67 KB
+ aws-c-s3 0.1.27 h8e2754f_1 conda-forge/linux-64 48 KB
+ aws-checksums 0.1.12 hcbdb60a_1 conda-forge/linux-64 50 KB
+ aws-crt-cpp 0.17.1 hf793bd7_3 conda-forge/linux-64 204 KB
+ aws-sdk-cpp 1.9.120 hab07a0e_0 conda-forge/linux-64 5 MB
+ bokeh 2.4.1 py37h89c1867_1 conda-forge/linux-64 14 MB
+ bzip2 1.0.8 h7f98852_4 conda-forge/linux-64 Cached
+ c-ares 1.18.1 h7f98852_0 conda-forge/linux-64 Cached
+ ca-certificates 2021.10.8 ha878542_0 conda-forge/linux-64 Cached
+ cachetools 4.2.4 pyhd8ed1ab_0 conda-forge/noarch 12 KB
+ click 8.0.3 py37h89c1867_1 conda-forge/linux-64 145 KB
+ cloudpickle 2.0.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ cudatoolkit 11.0.221 h6bb024c_0 nvidia/linux-64 953 MB
+ cudf 21.10.01 cuda_11.0_py37_ga1d2d13a14_0 rapidsai/linux-64 13 MB
+ cuml 21.10.00 cuda11.0_py37_g0fd3503ba_0 rapidsai/linux-64 9 MB
+ cupy 9.5.0 py37h6bfc3c5_1 conda-forge/linux-64 50 MB
+ cytoolz 0.11.2 py37h5e8e339_1 conda-forge/linux-64 407 KB
+ dask 2021.9.1 pyhd8ed1ab_0 conda-forge/noarch 4 KB
+ dask-core 2021.9.1 pyhd8ed1ab_0 conda-forge/noarch 768 KB
+ dask-cudf 21.10.01 py37_ga1d2d13a14_0 rapidsai/linux-64 110 KB
+ distributed 2021.9.1 py37h89c1867_0 conda-forge/linux-64 1 MB
+ dlpack 0.5 h9c3ff4c_0 conda-forge/linux-64 12 KB
+ faiss-proc 1.0.0 cuda rapidsai/linux-64 24 KB
+ fastavro 1.4.7 py37h5e8e339_1 conda-forge/linux-64 503 KB
+ fastrlock 0.8 py37hcd2ae1e_1 conda-forge/linux-64 31 KB
+ freetype 2.10.4 h0708190_1 conda-forge/linux-64 Cached
+ fsspec 2021.11.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ gflags 2.2.2 he1b5a44_1004 conda-forge/linux-64 114 KB
+ glog 0.5.0 h48cff8f_0 conda-forge/linux-64 104 KB
+ grpc-cpp 1.40.0 h05f19cf_2 conda-forge/linux-64 4 MB
+ heapdict 1.0.1 py_0 conda-forge/noarch Cached
+ icu 69.1 h9c3ff4c_0 conda-forge/linux-64 13 MB
+ importlib-metadata 4.8.2 py37h89c1867_0 conda-forge/linux-64 32 KB
+ jbig 2.1 h7f98852_2003 conda-forge/linux-64 Cached
+ jinja2 3.0.3 pyhd8ed1ab_0 conda-forge/noarch 99 KB
+ joblib 1.1.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ jpeg 9d h36c2ea0_0 conda-forge/linux-64 Cached
+ krb5 1.19.2 hcc1bbae_3 conda-forge/linux-64 Cached
+ lcms2 2.12 hddcbb42_0 conda-forge/linux-64 Cached
+ ld_impl_linux-64 2.36.1 hea4e1c9_2 conda-forge/linux-64 Cached
+ lerc 3.0 h9c3ff4c_0 conda-forge/linux-64 Cached
+ libblas 3.9.0 12_linux64_openblas conda-forge/linux-64 Cached
+ libbrotlicommon 1.0.9 h7f98852_6 conda-forge/linux-64 65 KB
+ libbrotlidec 1.0.9 h7f98852_6 conda-forge/linux-64 33 KB
+ libbrotlienc 1.0.9 h7f98852_6 conda-forge/linux-64 286 KB
+ libcblas 3.9.0 12_linux64_openblas conda-forge/linux-64 Cached
+ libcudf 21.10.01 cuda11.0_ga1d2d13a14_0 rapidsai/linux-64 220 MB
+ libcuml 21.10.00 cuda11.0_g0fd3503ba_0 rapidsai/linux-64 181 MB
+ libcumlprims 21.10.00 cuda11.0_g167dc59_0 nvidia/linux-64 2 MB
+ libcurl 7.80.0 h2574ce0_0 conda-forge/linux-64 337 KB
+ libdeflate 1.8 h7f98852_0 conda-forge/linux-64 Cached
+ libedit 3.1.20191231 he28a2e2_2 conda-forge/linux-64 Cached
+ libev 4.33 h516909a_1 conda-forge/linux-64 Cached
+ libevent 2.1.10 h9b69904_4 conda-forge/linux-64 1 MB
+ libfaiss 1.7.0 cuda110h8045045_8_cuda conda-forge/linux-64 67 MB
+ libffi 3.4.2 h7f98852_5 conda-forge/linux-64 57 KB
+ libgcc-ng 11.2.0 h1d223b6_11 conda-forge/linux-64 Cached
+ libgfortran-ng 11.2.0 h69a702a_11 conda-forge/linux-64 Cached
+ libgfortran5 11.2.0 h5c6108e_11 conda-forge/linux-64 Cached
+ libgomp 11.2.0 h1d223b6_11 conda-forge/linux-64 Cached
+ libhwloc 2.3.0 h5e5b7d1_1 conda-forge/linux-64 3 MB
+ libiconv 1.16 h516909a_0 conda-forge/linux-64 Cached
+ liblapack 3.9.0 12_linux64_openblas conda-forge/linux-64 Cached
+ libllvm10 10.0.1 he513fc3_3 conda-forge/linux-64 Cached
+ libnghttp2 1.43.0 h812cca2_1 conda-forge/linux-64 Cached
+ libnsl 2.0.0 h7f98852_0 conda-forge/linux-64 31 KB
+ libopenblas 0.3.18 pthreads_h8fe5266_0 conda-forge/linux-64 Cached
+ libpng 1.6.37 h21135ba_2 conda-forge/linux-64 Cached
+ libprotobuf 3.18.1 h780b84a_0 conda-forge/linux-64 3 MB
+ librmm 21.10.01 cuda11.0_gc54767f_0 rapidsai/linux-64 688 KB
+ libssh2 1.10.0 ha56f1ee_2 conda-forge/linux-64 Cached
+ libstdcxx-ng 11.2.0 he4da1e4_11 conda-forge/linux-64 Cached
+ libthrift 0.15.0 he6d91bd_1 conda-forge/linux-64 5 MB
+ libtiff 4.3.0 h6f004c6_2 conda-forge/linux-64 Cached
+ libutf8proc 2.6.1 h7f98852_0 conda-forge/linux-64 95 KB
+ libwebp-base 1.2.1 h7f98852_0 conda-forge/linux-64 Cached
+ libxml2 2.9.12 h885dcf4_1 conda-forge/linux-64 760 KB
+ libzlib 1.2.11 h36c2ea0_1013 conda-forge/linux-64 Cached
+ llvmlite 0.36.0 py37h9d7f4d0_0 conda-forge/linux-64 3 MB
+ locket 0.2.0 py_2 conda-forge/noarch Cached
+ lz4-c 1.9.3 h9c3ff4c_1 conda-forge/linux-64 Cached
+ markupsafe 2.0.1 py37h5e8e339_1 conda-forge/linux-64 22 KB
+ msgpack-python 1.0.2 py37h2527ec5_2 conda-forge/linux-64 91 KB
+ nccl 2.11.4.1 h96e36e3_0 conda-forge/linux-64 150 MB
+ ncurses 6.2 h58526e2_4 conda-forge/linux-64 Cached
+ numba 0.53.1 py37hb11d6e1_1 conda-forge/linux-64 4 MB
+ numpy 1.21.4 py37h31617e3_0 conda-forge/linux-64 Cached
+ nvtx 0.2.3 py37h5e8e339_0 conda-forge/linux-64 55 KB
+ olefile 0.46 pyh9f0ad1d_1 conda-forge/noarch Cached
+ openjpeg 2.4.0 hb52868f_1 conda-forge/linux-64 Cached
+ openssl 1.1.1l h7f98852_0 conda-forge/linux-64 Cached
+ orc 1.7.1 h68e2c4e_0 conda-forge/linux-64 1 MB
+ packaging 21.2 pyhd8ed1ab_1 conda-forge/noarch 35 KB
+ pandas 1.3.4 py37he8f5f7f_1 conda-forge/linux-64 13 MB
+ parquet-cpp 1.5.1 1 conda-forge/linux-64 3 KB
+ partd 1.2.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ pillow 8.4.0 py37h0f21c89_0 conda-forge/linux-64 706 KB
+ pip 21.3.1 pyhd8ed1ab_0 conda-forge/noarch Cached
+ protobuf 3.18.1 py37hcd2ae1e_0 conda-forge/linux-64 344 KB
+ psutil 5.8.0 py37h5e8e339_2 conda-forge/linux-64 340 KB
+ pyarrow 5.0.0 py37h08c6592_11_cuda conda-forge/linux-64 3 MB
+ pyparsing 2.4.7 pyhd8ed1ab_1 conda-forge/noarch 60 KB
+ python 3.7.12 hb7a2778_100_cpython conda-forge/linux-64 57 MB
+ python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge/noarch Cached
+ python_abi 3.7 2_cp37m conda-forge/linux-64 Cached
+ pytz 2021.3 pyhd8ed1ab_0 conda-forge/noarch Cached
+ pyyaml 6.0 py37h5e8e339_3 conda-forge/linux-64 187 KB
+ re2 2021.09.01 h9c3ff4c_0 conda-forge/linux-64 221 KB
+ readline 8.1 h46c0cb4_0 conda-forge/linux-64 Cached
+ rmm 21.10.01 cuda_11.0_py37_gc54767f_0 rapidsai/linux-64 940 KB
+ s2n 1.1.1 h9b69904_0 conda-forge/linux-64 485 KB
+ scipy 1.7.2 py37hf2a6cf1_0 conda-forge/linux-64 22 MB
+ setuptools 58.5.3 py37h89c1867_0 conda-forge/linux-64 1 MB
+ six 1.16.0 pyh6c4a22f_0 conda-forge/noarch Cached
+ snappy 1.1.8 he1b5a44_3 conda-forge/linux-64 32 KB
+ sortedcontainers 2.4.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ spdlog 1.8.5 h4bd325d_0 conda-forge/linux-64 353 KB
+ sqlite 3.36.0 h9cd32fc_2 conda-forge/linux-64 Cached
+ tblib 1.7.0 pyhd8ed1ab_0 conda-forge/noarch Cached
+ tk 8.6.11 h27826a3_1 conda-forge/linux-64 Cached
+ toolz 0.11.2 pyhd8ed1ab_0 conda-forge/noarch Cached
+ tornado 6.1 py37h5e8e339_2 conda-forge/linux-64 642 KB
+ treelite 2.1.0 py37h4b3d254_0 conda-forge/linux-64 1 MB
+ typing_extensions 3.10.0.2 pyha770c72_0 conda-forge/noarch Cached
+ ucx 1.11.1+gc58db6b cuda11.0_0 rapidsai/linux-64 12 MB
+ ucx-proc 1.0.0 gpu rapidsai/linux-64 9 KB
+ ucx-py 0.22.0 py37_gc58db6b_0 rapidsai/linux-64 349 KB
+ wheel 0.37.0 pyhd8ed1ab_1 conda-forge/noarch Cached
+ xz 5.2.5 h516909a_1 conda-forge/linux-64 Cached
+ yaml 0.2.5 h516909a_0 conda-forge/linux-64 Cached
+ zict 2.0.0 py_0 conda-forge/noarch Cached
+ zipp 3.6.0 pyhd8ed1ab_0 conda-forge/noarch 12 KB
+ zlib 1.2.11 h36c2ea0_1013 conda-forge/linux-64 Cached
+ zstd 1.5.0 ha95c52a_0 conda-forge/linux-64 Cached
Summary:
Install: 146 packages
Total download: 2 GB
─────────────────────────────────────────────────────────────────────────────────────────────────────────
Confirm changes: [Y/n] Y
Finished arrow-cpp-proc (00m:00s) 24 KB 69 KB/s
Finished libbrotlicommon (00m:00s) 65 KB 185 KB/s
Finished libutf8proc (00m:00s) 95 KB 269 KB/s
Finished dlpack (00m:00s) 12 KB 32 KB/s
Finished libbrotlidec (00m:00s) 33 KB 83 KB/s
Finished aws-c-compression (00m:00s) 16 KB 41 KB/s
Finished gflags (00m:00s) 114 KB 266 KB/s
Finished abseil-cpp (00m:00s) 1010 KB 2 MB/s
Finished aws-c-http (00m:00s) 170 KB 378 KB/s
Finished aws-c-io (00m:00s) 121 KB 260 KB/s
Finished s2n (00m:00s) 485 KB 1 MB/s
Finished aws-c-s3 (00m:00s) 48 KB 98 KB/s
Finished aws-c-mqtt (00m:00s) 67 KB 130 KB/s
Finished grpc-cpp (00m:00s) 4 MB 7 MB/s
Finished cachetools (00m:00s) 12 KB 22 KB/s
Finished markupsafe (00m:00s) 22 KB 37 KB/s
Finished pyyaml (00m:00s) 187 KB 305 KB/s
Finished nvtx (00m:00s) 55 KB 86 KB/s
Finished aws-sdk-cpp (00m:00s) 5 MB 7 MB/s
Finished cytoolz (00m:00s) 407 KB 607 KB/s
Finished importlib-metadata (00m:00s) 32 KB 47 KB/s
Finished click (00m:00s) 145 KB 197 KB/s
Finished dask-core (00m:00s) 768 KB 965 KB/s
Finished pyarrow (00m:00s) 3 MB 4 MB/s
Finished numba (00m:00s) 4 MB 4 MB/s
Finished re2 (00m:00s) 221 KB 172 KB/s
Finished bokeh (00m:00s) 14 MB 11 MB/s
Finished glog (00m:00s) 104 KB 79 KB/s
Finished libxml2 (00m:00s) 760 KB 554 KB/s
Finished libhwloc (00m:00s) 3 MB 2 MB/s
Finished libcurl (00m:00s) 337 KB 196 KB/s
Finished zipp (00m:00s) 12 KB 7 KB/s
Finished dask-cudf (00m:00s) 110 KB 51 KB/s
Finished fastrlock (00m:00s) 31 KB 14 KB/s
Finished fastavro (00m:00s) 503 KB 211 KB/s
Finished parquet-cpp (00m:00s) 3 KB 1 KB/s
Finished pandas (00m:00s) 13 MB 5 MB/s
Finished ucx (00m:01s) 12 MB 4 MB/s
Finished librmm (00m:00s) 688 KB 207 KB/s
Finished libffi (00m:00s) 57 KB 16 KB/s
Finished aws-c-cal (00m:00s) 36 KB 10 KB/s
Finished aws-c-event-stream (00m:00s) 47 KB 13 KB/s
Finished aws-c-auth (00m:00s) 99 KB 27 KB/s
Finished ucx-py (00m:00s) 349 KB 81 KB/s
Finished tornado (00m:00s) 642 KB 144 KB/s
Finished protobuf (00m:00s) 344 KB 76 KB/s
Finished faiss-proc (00m:00s) 24 KB 5 KB/s
Finished jinja2 (00m:00s) 99 KB 21 KB/s
Finished dask (00m:00s) 4 KB 915 B/s
Finished snappy (00m:00s) 32 KB 7 KB/s
Finished libnsl (00m:00s) 31 KB 6 KB/s
Finished libevent (00m:00s) 1 MB 226 KB/s
Finished orc (00m:00s) 1 MB 217 KB/s
Finished aws-crt-cpp (00m:00s) 204 KB 39 KB/s
Finished packaging (00m:00s) 35 KB 7 KB/s
Finished msgpack-python (00m:00s) 91 KB 17 KB/s
Finished pillow (00m:00s) 706 KB 131 KB/s
Finished treelite (00m:00s) 1 MB 273 KB/s
Finished cupy (00m:01s) 50 MB 9 MB/s
Finished icu (00m:00s) 13 MB 2 MB/s
Finished libthrift (00m:00s) 5 MB 781 KB/s
Finished ucx-proc (00m:00s) 9 KB 1 KB/s
Finished cudf (00m:01s) 13 MB 2 MB/s
Finished libbrotlienc (00m:00s) 286 KB 38 KB/s
Finished scipy (00m:00s) 22 MB 3 MB/s
Finished distributed (00m:00s) 1 MB 139 KB/s
Finished psutil (00m:00s) 340 KB 40 KB/s
Finished python (00m:00s) 57 MB 7 MB/s
Finished rmm (00m:00s) 940 KB 93 KB/s
Finished setuptools (00m:00s) 1 MB 101 KB/s
Finished aws-c-common (00m:00s) 174 KB 16 KB/s
Finished libprotobuf (00m:00s) 3 MB 247 KB/s
Finished spdlog (00m:00s) 353 KB 33 KB/s
Finished arrow-cpp (00m:00s) 23 MB 2 MB/s
Finished llvmlite (00m:00s) 3 MB 257 KB/s
Finished aws-checksums (00m:00s) 50 KB 5 KB/s
Finished nccl (00m:03s) 150 MB 14 MB/s
Finished libfaiss (00m:01s) 67 MB 6 MB/s
Finished libcumlprims (00m:00s) 2 MB 154 KB/s
Finished pyparsing (00m:00s) 60 KB 5 KB/s
Finished cuml (00m:00s) 9 MB 728 KB/s
Finished libcudf (00m:15s) 220 MB 13 MB/s
Finished cudatoolkit (00m:17s) 953 MB 56 MB/s
Finished libcuml (00m:24s) 181 MB 6 MB/s
Downloading [=================================================================] (03m:34s) 66.00 MB/s
Extracting [=================================================================] (03m:34s) 84 / 84
Preparing transaction: done
Verifying transaction: \ Killed
This issue has been labeled inactive-30d
due to no recent activity in the past 30 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed. This issue will be labeled inactive-90d
if there is no activity in the next 60 days.
@higgteil I'm having this issue as well. Did you find a solution?
This issue seems to be stemming from the mamba/conda installation step more than from the rapids side, but we'll try to see if it repro's on the centos docker containers and try triage as well
This issue has been labeled inactive-30d
due to no recent activity in the past 30 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed. This issue will be labeled inactive-90d
if there is no activity in the next 60 days.
Hello, I can't seem to install as well.
This is what I see with mamba
rapidsai/osx-64 [====================] (00m:00s) Done
rapidsai/noarch [====================] (00m:00s) Done
nvidia/osx-64 [====================] (00m:00s) Done
nvidia/noarch [====================] (00m:00s) Done
pkgs/r/noarch [====================] (00m:00s) Done
pkgs/main/noarch [====================] (00m:00s) Done
pkgs/r/osx-64 [====================] (00m:00s) Done
pkgs/main/osx-64 [====================] (00m:00s) Done
conda-forge/noarch [====================] (00m:01s) Done
conda-forge/osx-64 [====================] (00m:04s) Done
Looking for: ['rapids=22.02', 'python=3.9', 'cudatoolkit=11.4', 'dask-sql']
Encountered problems while solving.
Problem: nothing provides requested rapids 22.02**
Problem: nothing provides requested cudatoolkit 11.4**
This is what I see with conda
:
% conda create -n rapids-22.02 -c rapidsai -c nvidia -c conda-forge \
rapids=22.02 python=3.8 cudatoolkit=11.4 dask-sql
Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed
PackagesNotFoundError: The following packages are not available from current channels:
- cudatoolkit=11.4
- rapids=22.02
Current channels:
- https://conda.anaconda.org/rapidsai/osx-64
- https://conda.anaconda.org/rapidsai/noarch
- https://conda.anaconda.org/nvidia/osx-64
- https://conda.anaconda.org/nvidia/noarch
- https://conda.anaconda.org/conda-forge/osx-64
- https://conda.anaconda.org/conda-forge/noarch
- https://repo.anaconda.com/pkgs/main/osx-64
- https://repo.anaconda.com/pkgs/main/noarch
- https://repo.anaconda.com/pkgs/r/osx-64
- https://repo.anaconda.com/pkgs/r/noarch
Please help! Thanks in advance!
This issue has been labeled inactive-90d
due to no recent activity in the past 90 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.
Is there any update on this? Please help!
Make sure that your channel priority is flexible. This works for me:
conda config --set channel_priority flexible
conda create -n rapids -c rapidsai -c nvidia -c conda-forge cuml=22.06 python=3.8 cudatoolkit=11.5
Describe the bug Hi, tried to install cuML on a computing cluster via conda in existing environment and then in a new environment. I also tried the advice found here https://github.com/rapidsai/cuml/issues/3108 and used more channels, but everything I tried had no success: conda cannot install the package.
Steps/Code to reproduce bug Minimal example:
conda install -c rapidsai cuml Collecting package metadata (current_repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): /
I ran the debug script referenced here from one of the developers https://github.com/rapidsai/cuml/issues/3108 (file attached) env.txt