Closed Kowsher closed 1 year ago
Starting in 23.02, RAPIDS pip packages use a new index URL: https://pypi.nvidia.com
. You can install with pip install cuml-cu11 --extra-index-url=https://pypi.nvidia.com
.
If you still see the old URL on https://rapids.ai/pip.html#install you may be looking at a cached version on your browser.
Closing as answered, but please feel free to reopen if you have any issues.
Hello, I'm receiving the same error. Both the cu11 and cu12 versions of the command pip install cuml-cu11 --extra-index-url=https://pypi.nvidia.com
do not work and yield the error note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
Same error
@plehman2000 @ermaxinc could you include the full traceback (ideally in an attached file so that the GH thread doesn't explode :slightly_smiling_face:)? Are you also seeing the same Using cached cuml_cu11-23.2.0.tar.gz (6.5 kB)
in the original error message? If so, you may need to do a pip install --no-cache-dir
.
@vyasr
PS G:\Python\Boosty_V3> python --version
Python 3.10.5
PS G:\Python\Boosty_V3> pip install cuml-cu11 --extra-index-url=https://pypi.nvidia.com --no-cache-dir
Looking in indexes: https://pypi.org/simple, https://pypi.nvidia.com
Collecting cuml-cu11
Downloading cuml-cu11-23.6.0.tar.gz (6.8 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [16 lines of output]
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "C:\Users\user\AppData\Local\Temp\pip-install-nxtn50fa\cuml-cu11_9a521611ce1046eebf6aec7624b06565\setup.py", line 137, in <module>
raise RuntimeError(open("ERROR.txt", "r").read())
RuntimeError:
###########################################################################################
The package you are trying to install is only a placeholder project on PyPI.org repository.
This package is hosted on NVIDIA Python Package Index.
This package can be installed as:
$ pip install --extra-index-url https://pypi.nvidia.com cuml-cu11
```
###########################################################################################
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details.
PS. PyCharm latest version
Ah that looks like you are on Windows, is that right? Unfortunately cuml isn't supported on Windows.
RAPIDS supported platforms are listed here: https://docs.rapids.ai/install#system-req
Windows users can try the provided instructions for WSL2, but RAPIDS does not produce native Windows packages.
Going to close this as resolved again for now, but please reopen if needed.
I'm trying to install cuML on a Linux system, but I get the same error as mentioned above.
(dinov2) [jenas@beluga3 dinov2]$ pip install --extra-index-url https://download.pytorch.org/whl/cu117 --extra-index-url https://pypi.nvidia.com cuml-cu11
Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu117, https://pypi.nvidia.com
Looking in links: /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo/avx512, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo/avx2, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo/generic, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic
Collecting cuml-cu11
Using cached cuml-cu11-23.6.0.tar.gz (6.8 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [16 lines of output]
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "/tmp/pip-install-x0qpxtmz/cuml-cu11_436e7571d2b440ce8339f1c5e9b054b1/setup.py", line 137, in <module>
raise RuntimeError(open("ERROR.txt", "r").read())
RuntimeError:
###########################################################################################
The package you are trying to install is only a placeholder project on PyPI.org repository.
This package is hosted on NVIDIA Python Package Index.
This package can be installed as:
$ pip install --extra-index-url https://pypi.nvidia.com cuml-cu11
```
###########################################################################################
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details.
hi, @vyasr
I have tried the command pip install cuml-cu11 --extra-index-url=https://pypi.nvidia.com
;
but network errors still exist.
And when i try to open 'https://pypi.nvidia.com' directly in browser, it returns only a 'AccessDenied' page.
So, is there any other way to install it?
Hello, the error is still there, I'm on Ubuntu 22.04
$ pip install --extra-index-url https://pypi.nvidia.com cudf-cu12
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com, https://pypi.nvidia.com
Collecting cudf-cu12
Downloading cudf-cu12-23.8.0.tar.gz (6.8 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [16 lines of output]
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "/tmp/pip-install-ktxk516p/cudf-cu12_e8ca359c76df488cb8ee1376ebd020c1/setup.py", line 137, in <module>
raise RuntimeError(open("ERROR.txt", "r").read())
RuntimeError:
###########################################################################################
The package you are trying to install is only a placeholder project on PyPI.org repository.
This package is hosted on NVIDIA Python Package Index.
This package can be installed as:
$ pip install --extra-index-url https://pypi.nvidia.com cudf-cu12
```
###########################################################################################
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details.
@chaoer @pingumen96 Can you please provide your OS and version (if not already mentioned), Python version, pip version, output of pip list
, and output of nvidia-smi
? This will help us make sure you're using a supported OS (Linux or WSL2), supported Python version (3.9 or 3.10 as of this writing), recent version of pip, and compatible CUDA 11 or CUDA 12 version.
The installation guide https://docs.rapids.ai/install also provides conda packages and Docker image instructions, as well as some troubleshooting information for pip packages.
@chaoer @pingumen96 Can you please provide your OS and version (if not already mentioned), Python version, pip version, output of
pip list
, and output ofnvidia-smi
? This will help us make sure you're using a supported OS (Linux or WSL2), supported Python version (3.9 or 3.10 as of this writing), recent version of pip, and compatible CUDA 11 or CUDA 12 version.The installation guide https://docs.rapids.ai/install also provides conda packages and Docker image instructions, as well as some troubleshooting information for pip packages.
OS: Ubuntu 22.04.3 LTS Python version: 3.11 (it's possible that this is the problem, I see now) pip version: 23.1.2 pip list output:
Package Version
---------------------------- ---------------
absl-py 2.0.0
accelerate 0.21.0
addict 2.4.0
aenum 3.1.15
aiofiles 23.2.1
aiohttp 3.8.5
aiosignal 1.3.1
altair 5.1.1
antlr4-python3-runtime 4.9.3
anyio 3.7.1
astunparse 1.6.3
async-timeout 4.0.3
attrs 23.1.0
basicsr 1.4.2
beautifulsoup4 4.12.2
blendmodes 2022
blinker 1.6.2
boltons 23.0.0
brotlipy 0.7.0
cachetools 5.3.1
certifi 2023.7.22
cffi 1.15.1
charset-normalizer 2.0.4
clean-fid 0.1.35
click 8.1.7
clip 1.0
cmake 3.27.5
colorama 0.4.6
conda 23.7.4
conda-content-trust 0.1.3
conda-libmamba-solver 23.5.0
conda-package-handling 2.1.0
conda_package_streaming 0.8.0
contourpy 1.1.1
cryptography 39.0.1
cycler 0.11.0
deprecation 2.1.0
einops 0.4.1
facexlib 0.3.0
fastapi 0.94.0
ffmpy 0.3.1
filelock 3.12.4
filterpy 1.4.5
Flask 2.3.3
flatbuffers 23.5.26
fonttools 4.42.1
frozenlist 1.4.0
fsspec 2023.9.2
ftfy 6.1.1
future 0.18.3
gast 0.4.0
gdown 4.7.1
gfpgan 1.3.8
gitdb 4.0.10
GitPython 3.1.32
google-auth 2.23.0
google-auth-oauthlib 1.0.0
google-pasta 0.2.0
gradio 3.41.2
gradio_client 0.5.0
grpcio 1.58.0
h11 0.12.0
h5py 3.9.0
httpcore 0.15.0
httpx 0.24.1
huggingface-hub 0.17.2
idna 3.4
imageio 2.31.4
importlib-metadata 6.8.0
importlib-resources 6.1.0
inflection 0.5.1
itsdangerous 2.1.2
Jinja2 3.1.2
joblib 1.3.2
jsonmerge 1.8.0
jsonpatch 1.32
jsonpointer 2.1
jsonschema 4.19.1
jsonschema-specifications 2023.7.1
keras 2.13.1
kiwisolver 1.4.5
kornia 0.6.7
lark 1.1.2
lazy_loader 0.3
libclang 16.0.6
libmambapy 1.4.1
lightning-utilities 0.9.0
lit 17.0.1
llvmlite 0.41.0
lmdb 1.4.1
lpips 0.1.4
Markdown 3.4.4
MarkupSafe 2.1.3
matplotlib 3.8.0
mpmath 1.3.0
multidict 6.0.4
networkx 3.1
numba 0.58.0
numpy 1.23.5
nvidia-cublas-cu11 11.11.3.6
nvidia-cublas-cu12 12.2.5.6
nvidia-cuda-nvrtc-cu12 12.2.140
nvidia-cuda-runtime-cu12 12.2.140
nvidia-cudnn-cu11 8.6.0.163
nvidia-cudnn-cu12 8.9.4.25
nvidia-pyindex 1.0.9
oauthlib 3.2.2
omegaconf 2.2.3
open-clip-torch 2.20.0
openai 0.28.1
opencv-python 4.8.0.76
opencv-python-headless 4.8.0.76
opt-einsum 3.3.0
orjson 3.9.7
packaging 23.0
pandas 2.1.1
piexif 1.1.3
Pillow 9.5.0
pip 23.1.2
platformdirs 3.10.0
pluggy 1.0.0
protobuf 3.20.0
psutil 5.9.5
pyasn1 0.5.0
pyasn1-modules 0.3.0
pycosat 0.6.4
pycparser 2.21
pydantic 1.10.12
pydub 0.25.1
pygame 2.5.2
pyOpenSSL 23.0.0
pyparsing 3.1.1
PySocks 1.7.1
pytesseract 0.3.10
python-dateutil 2.8.2
python-decouple 3.8
python-multipart 0.0.6
pytorch-lightning 1.9.4
pytz 2023.3.post1
PyWavelets 1.4.1
PyYAML 6.0.1
realesrgan 0.3.0
referencing 0.30.2
regex 2023.8.8
requests 2.29.0
requests-oauthlib 1.3.1
resize-right 0.0.2
rpds-py 0.10.3
rsa 4.9
ruamel.yaml 0.17.21
safetensors 0.3.1
scikit-image 0.21.0
scikit-learn 1.3.1
scipy 1.11.2
semantic-version 2.10.0
sentencepiece 0.1.99
setuptools 67.8.0
six 1.16.0
smmap 5.0.1
sniffio 1.3.0
soupsieve 2.5
starlette 0.26.1
sympy 1.12
tb-nightly 2.15.0a20230925
tenacity 8.2.3
tensorboard 2.13.0
tensorboard-data-server 0.7.1
tensorflow 2.13.0
tensorflow-estimator 2.13.0
tensorflow-io-gcs-filesystem 0.34.0
tensorrt 8.6.1.post1
tensorrt-bindings 8.6.1
tensorrt-libs 8.6.1
termcolor 2.3.0
tesseract 0.1.3
threadpoolctl 3.2.0
tifffile 2023.9.18
tiktoken 0.5.1
timm 0.9.2
tokenizers 0.13.3
tomesd 0.1.3
tomli 2.0.1
toolz 0.12.0
torch 2.0.1+cu118
torchdiffeq 0.2.3
torchmetrics 1.2.0
torchsde 0.2.5
torchvision 0.15.2+cu118
tqdm 4.65.0
trampoline 0.1.2
transformers 4.30.2
triton 2.0.0
typing_extensions 4.5.0
tzdata 2023.3
urllib3 1.26.16
uvicorn 0.23.2
wcwidth 0.2.6
websockets 11.0.3
Werkzeug 2.3.7
wheel 0.38.4
wrapt 1.15.0
yapf 0.40.2
yarl 1.9.2
zipp 3.17.0
zstandard 0.19.0
nvidia-smi output:
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 2080 ... Off | 00000000:01:00.0 On | N/A |
| 0% 61C P0 57W / 250W | 4501MiB / 8192MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 1544 G /usr/lib/xorg/Xorg 1361MiB |
| 0 N/A N/A 1827 G /usr/bin/gnome-shell 375MiB |
| 0 N/A N/A 2547 G ...2938967,15047306651023814721,262144 256MiB |
| 0 N/A N/A 2945 G ...sion,SpareRendererForSitePerProcess 236MiB |
| 0 N/A N/A 3950 C python 2184MiB |
+---------------------------------------------------------------------------------------+
Thanks for the info, and it look like the problem is clear! (We don't currently provide Python 3.11 wheels).
Are you able to use Python 3.9 or 3.10? If not, would love to learn more about how you selected Python 3.11.
Thanks for the info, and it look like the problem is clear! (We don't currently provide Python 3.11 wheels).
Are you able to use Python 3.9 or 3.10? If not, would love to learn more about how you selected Python 3.11.
Yes, I've been able to install the libs using Python 3.10. I was using the default version of Python that is present on Ubuntu 22.04 and I was pretty sure it was the 3.10. So thank you very much for the support
@chaoer @pingumen96 Can you please provide your OS and version (if not already mentioned), Python version, pip version, output of
pip list
, and output ofnvidia-smi
? This will help us make sure you're using a supported OS (Linux or WSL2), supported Python version (3.9 or 3.10 as of this writing), recent version of pip, and compatible CUDA 11 or CUDA 12 version.The installation guide https://docs.rapids.ai/install also provides conda packages and Docker image instructions, as well as some troubleshooting information for pip packages.
I have checked the python version. It's 3.9.18. Is there any other advice?
OS Version (with lsb_release -a
):
Distributor ID: Ubuntu
Description: Ubuntu 20.04.6 LTS
Release: 20.04
Codename: focal
Python list ( with conda list
):
# Name Version Build Channel
_libgcc_mutex 0.1 main defaults
_openmp_mutex 5.1 1_gnu defaults
addict 2.4.0 pypi_0 pypi
antlr-python-runtime 4.9.3 pyhd8ed1ab_1 conda-forge
asttokens 2.4.0 pyhd8ed1ab_0 conda-forge
backcall 0.2.0 pyh9f0ad1d_0 conda-forge
backports 1.0 pyhd8ed1ab_3 conda-forge
backports.functools_lru_cache 1.6.5 pyhd8ed1ab_0 conda-forge
blas 1.0 mkl defaults
bottleneck 1.3.5 py39h7deecbd_0 defaults
brotlipy 0.7.0 py39h27cfd23_1003 defaults
bzip2 1.0.8 h7b6447c_0 defaults
ca-certificates 2023.08.22 h06a4308_0 defaults
certifi 2023.7.22 py39h06a4308_0 defaults
cffi 1.15.1 py39h5eee18b_3 defaults
charset-normalizer 2.0.4 pyhd3eb1b0_0 defaults
cloudpickle 2.2.1 pypi_0 pypi
comm 0.1.4 pyhd8ed1ab_0 conda-forge
contourpy 1.1.1 pypi_0 pypi
cryptography 41.0.3 py39hdda0065_0 defaults
cuda-cudart 11.7.99 0 nvidia
cuda-cupti 11.7.101 0 nvidia
cuda-libraries 11.7.1 0 nvidia
cuda-nvrtc 11.7.99 0 nvidia
cuda-nvtx 11.7.91 0 nvidia
cuda-runtime 11.7.1 0 nvidia
cycler 0.11.0 pypi_0 pypi
dataclasses 0.8 pyh6d0b6a4_7 defaults
debugpy 1.6.7 py39h6a678d5_0 defaults
decorator 5.1.1 pyhd8ed1ab_0 conda-forge
entrypoints 0.4 pyhd8ed1ab_0 conda-forge
exceptiongroup 1.1.3 pyhd8ed1ab_0 conda-forge
executing 1.2.0 pyhd8ed1ab_0 conda-forge
ffmpeg 4.2.2 h20bf706_0 defaults
filelock 3.9.0 py39h06a4308_0 defaults
fonttools 4.42.1 pypi_0 pypi
freetype 2.12.1 h4a9f257_0 defaults
fvcore 0.1.5.post20221221 pyhd8ed1ab_0 conda-forge
giflib 5.2.1 h5eee18b_3 defaults
gmp 6.2.1 h295c915_3 defaults
gnutls 3.6.15 he1e5248_0 defaults
idna 3.4 py39h06a4308_0 defaults
importlib-metadata 6.8.0 pypi_0 pypi
importlib-resources 6.1.0 pypi_0 pypi
intel-openmp 2023.1.0 hdb19cb5_46305 defaults
iopath 0.1.9 pyhd8ed1ab_0 conda-forge
ipykernel 6.25.2 pyh2140261_0 conda-forge
ipython 8.15.0 pyh0d859eb_0 conda-forge
jedi 0.19.0 pyhd8ed1ab_0 conda-forge
jinja2 3.1.2 py39h06a4308_0 defaults
jpeg 9e h5eee18b_1 defaults
jupyter_client 7.3.4 pyhd8ed1ab_0 conda-forge
jupyter_core 4.12.0 py39hf3d152e_0 conda-forge
kiwisolver 1.4.5 pypi_0 pypi
lame 3.100 h7b6447c_0 defaults
lcms2 2.12 h3be6417_0 defaults
ld_impl_linux-64 2.38 h1181459_1 defaults
lerc 3.0 h295c915_0 defaults
libcublas 11.10.3.66 0 nvidia
libcufft 10.7.2.124 h4fbf590_0 nvidia
libcufile 1.7.2.10 0 nvidia
libcurand 10.3.3.141 0 nvidia
libcusolver 11.4.0.1 0 nvidia
libcusparse 11.7.4.91 0 nvidia
libdeflate 1.17 h5eee18b_0 defaults
libffi 3.4.4 h6a678d5_0 defaults
libgcc-ng 11.2.0 h1234567_1 defaults
libgomp 11.2.0 h1234567_1 defaults
libidn2 2.3.4 h5eee18b_0 defaults
libnpp 11.7.4.75 0 nvidia
libnvjpeg 11.8.0.2 0 nvidia
libopus 1.3.1 h7b6447c_0 defaults
libpng 1.6.39 h5eee18b_0 defaults
libsodium 1.0.18 h36c2ea0_1 conda-forge
libstdcxx-ng 11.2.0 h1234567_1 defaults
libtasn1 4.19.0 h5eee18b_0 defaults
libtiff 4.5.1 h6a678d5_0 defaults
libunistring 0.9.10 h27cfd23_0 defaults
libvpx 1.7.0 h439df22_0 defaults
libwebp 1.3.2 h11a3e52_0 defaults
libwebp-base 1.3.2 h5eee18b_0 defaults
lz4-c 1.9.4 h6a678d5_0 defaults
markupsafe 2.1.1 py39h7f8727e_0 defaults
matplotlib 3.8.0 pypi_0 pypi
matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge
mkl 2023.1.0 h213fc3f_46343 defaults
mkl-service 2.4.0 py39h5eee18b_1 defaults
mkl_fft 1.3.8 py39h5eee18b_0 defaults
mkl_random 1.2.4 py39hdb19cb5_0 defaults
mmcls 0.25.0 pypi_0 pypi
mmcv-full 1.5.0 pypi_0 pypi
mmsegmentation 0.27.0 pypi_0 pypi
mpmath 1.3.0 py39h06a4308_0 defaults
mypy-extensions 1.0.0 pypi_0 pypi
ncurses 6.4 h6a678d5_0 defaults
nest-asyncio 1.5.6 pyhd8ed1ab_0 conda-forge
nettle 3.7.3 hbbd107a_1 defaults
networkx 3.1 py39h06a4308_0 defaults
numexpr 2.8.4 py39hc78ab66_1 defaults
numpy 1.25.2 py39h5f9d8c6_0 defaults
numpy-base 1.25.2 py39hb5e798b_0 defaults
omegaconf 2.3.0 pyhd8ed1ab_0 conda-forge
opencv-python 4.8.0.76 pypi_0 pypi
openh264 2.1.1 h4ff587b_0 defaults
openssl 3.0.11 h7f8727e_2 defaults
packaging 23.1 py39h06a4308_0 defaults
pandas 2.0.3 py39h1128e8f_0 defaults
parso 0.8.3 pyhd8ed1ab_0 conda-forge
pexpect 4.8.0 pyh1a96a4e_2 conda-forge
pickleshare 0.7.5 py_1003 conda-forge
pillow 9.4.0 py39h6a678d5_1 defaults
pip 23.2.1 py39h06a4308_0 defaults
platformdirs 3.10.0 pypi_0 pypi
portalocker 2.3.0 py39h06a4308_1 defaults
prettytable 3.9.0 pypi_0 pypi
prompt-toolkit 3.0.39 pyha770c72_0 conda-forge
prompt_toolkit 3.0.39 hd8ed1ab_0 conda-forge
psutil 5.9.0 py39h5eee18b_0 defaults
ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge
pure_eval 0.2.2 pyhd8ed1ab_0 conda-forge
pycparser 2.21 pyhd3eb1b0_0 defaults
pygments 2.16.1 pyhd8ed1ab_0 conda-forge
pyopenssl 23.2.0 py39h06a4308_0 defaults
pyparsing 3.1.1 pypi_0 pypi
pyre-extensions 0.0.23 pypi_0 pypi
pysocks 1.7.1 py39h06a4308_0 defaults
python 3.9.18 h955ad1f_0 defaults
python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge
python-tzdata 2023.3 pyhd3eb1b0_0 defaults
python_abi 3.9 2_cp39 conda-forge
pytorch 2.0.0 py3.9_cuda11.7_cudnn8.5.0_0 pytorch
pytorch-cuda 11.7 h778d358_5 pytorch
pytorch-mutex 1.0 cuda pytorch
pytz 2023.3.post1 py39h06a4308_0 defaults
pyyaml 6.0 py39h5eee18b_1 defaults
pyzmq 25.1.0 py39h6a678d5_0 defaults
readline 8.2 h5eee18b_0 defaults
requests 2.31.0 py39h06a4308_0 defaults
setuptools 68.0.0 py39h06a4308_0 defaults
six 1.16.0 pyh6c4a22f_0 conda-forge
sqlite 3.41.2 h5eee18b_0 defaults
stack_data 0.6.2 pyhd8ed1ab_0 conda-forge
submitit 1.4.6 pypi_0 pypi
sympy 1.12 pyh04b8f61_3 conda-forge
tabulate 0.8.10 py39h06a4308_0 defaults
tbb 2021.8.0 hdb19cb5_0 defaults
termcolor 2.1.0 py39h06a4308_0 defaults
tk 8.6.12 h1ccaba5_0 defaults
tomli 2.0.1 pypi_0 pypi
torchmetrics 0.10.3 pyhd8ed1ab_0 conda-forge
torchtriton 2.0.0 py39 pytorch
torchvision 0.15.0 py39_cu117 pytorch
tornado 6.1 py39hb9d737c_3 conda-forge
tqdm 4.65.0 py39hb070fc8_0 defaults
traitlets 5.10.0 pyhd8ed1ab_0 conda-forge
typing-inspect 0.9.0 pypi_0 pypi
typing_extensions 4.7.1 py39h06a4308_0 defaults
tzdata 2023c h04d1e81_0 defaults
urllib3 1.26.16 py39h06a4308_0 defaults
wcwidth 0.2.6 pyhd8ed1ab_0 conda-forge
wheel 0.38.4 py39h06a4308_0 defaults
x264 1!157.20191217 h7b6447c_0 defaults
xformers 0.0.18 pypi_0 pypi
xz 5.4.2 h5eee18b_0 defaults
yacs 0.1.6 pyhd3eb1b0_1 defaults
yaml 0.2.5 h7b6447c_0 defaults
yapf 0.40.1 pypi_0 pypi
zeromq 4.3.4 h9c3ff4c_1 conda-forge
zipp 3.17.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0 defaults
zstd 1.5.5 hc292b87_0 defaults
NVIDIA output:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... Off | 00000000:2D:00.0 Off | 0 |
| N/A 46C P0 73W / 300W | 28395MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2... Off | 00000000:32:00.0 Off | 0 |
| N/A 47C P0 70W / 300W | 28411MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 Tesla V100-SXM2... Off | 00000000:5B:00.0 Off | 0 |
| N/A 48C P0 86W / 300W | 28459MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 Tesla V100-SXM2... Off | 00000000:5F:00.0 Off | 0 |
| N/A 45C P0 69W / 300W | 29639MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 4 Tesla V100-SXM2... Off | 00000000:B5:00.0 Off | 0 |
| N/A 49C P0 68W / 300W | 28431MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 5 Tesla V100-SXM2... Off | 00000000:BE:00.0 Off | 0 |
| N/A 45C P0 69W / 300W | 29399MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 6 Tesla V100-SXM2... Off | 00000000:DF:00.0 Off | 0 |
| N/A 49C P0 74W / 300W | 29659MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 7 Tesla V100-SXM2... Off | 00000000:E7:00.0 Off | 0 |
| N/A 49C P0 72W / 300W | 29635MiB / 32768MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
@chaoer It seems like your environment (Python 3.9 / CUDA 11.8 / Ubuntu 20.04) should be supported by current RAPIDS versions. I didn't see a traceback with the errors you saw from your comment above, though you mentioned network errors. You might be able to try using conda packages or Docker containers. Feel free to join the RAPIDS Slack (https://rapids.ai/slack-invite) and message there if you'd like to diagnose this together in more detail.
@bdice thanks for your help. It's indeed a network error, as I successfully installed it on another server with different network settings.
Hello everyone,
I have the same issue, I am trying to install RAPIDS on google colab, I checked and I'm using the T4 GPU (I tried with other GPUs as well)
My python version seems to be OK
But I am still getting this error, can someone help me please ?
Sorry to bother but I really can't find to problem on my own
Thank you for your attention.
Hi guys,
Same over here.... cuml librry used to work up untill few days ago and now it breaks. Any help or idea would be appreciated.
attempt to install:
Python and os:
!nvidia-smi:
Thanks for any help,
-Ofer
Apologies for the issues installing cuml! We are in the middle of releasing RAPIDS v23.12 (including cuml) and things aren't quite working just yet! You can use v23.10 in the meantime.
I have the same issue, I am trying to install RAPIDS on google colab, I checked and I'm using the T4 GPU (I tried with other GPUs as well)
@babaduke7 https://github.com/rapidsai-community/rapidsai-csp-utils/pull/84 should fix this issue for you by using v23.10. Please try again!
Same over here.... cuml librry used to work up untill few days ago and now it breaks. Any help or idea would be appreciated.
@oferw-xpz You can try using v23.10 like pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com 'cuml-cu11==23.10.*'
Many thanks... works like a charm 🙏
On Mon, Dec 11, 2023 at 10:44 PM babaduke7 @.***> wrote:
thank you, it worked for me
— Reply to this email directly, view it on GitHub https://github.com/rapidsai/cuml/issues/5237#issuecomment-1850859016, or unsubscribe https://github.com/notifications/unsubscribe-auth/BCWQHDTPWK2YF6DAQXGE7GLYI5WCZAVCNFSM6AAAAAAU623QOKVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQNJQHA2TSMBRGY . You are receiving this because you were mentioned.Message ID: @.***>
Sorry to reopen, but was not sure where to ask. I am having issues with the installation of cuml, but from what I understand it might be related to my environment installation versions, so I wanted to confirm if upgrading is the only thing I could do.
Environment details: Python 3.8.10 (from the university, so it is hard for me to make the upgrade as I have to request it) Linux dl-machine 5.4.0-146-generic #163-Ubuntu SMP Fri Mar 17 18:26:02 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0
Is Python 3.8 only supported for cudf-cu11?
Thanks in advance
@Bersk91 Python 3.8 support was dropped in RAPIDS 23.06. https://docs.rapids.ai/notices/rsn0029/
RAPIDS currently supports Python 3.9 and 3.10. Please consult https://docs.rapids.ai/install for the latest installation information, system requirements, and platform support.
Sometimes it is possible to install a conda environment that you control on university HPC clusters, such as into a home directory. That could allow you to get a newer Python version. This guide is a little outdated but covers the main ideas: https://rabernat.medium.com/custom-conda-environments-for-data-science-on-hpc-clusters-32d58c63aa95 I searched online for "installing conda on hpc cluster" and found several more guides. Hope that helps.
Hello everyone,
I'm still facing this issue on a Linux system despite trying both Python 3.9 and Python 3.10
$ pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com 'cuml-cu11==23.10.*'
Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://pypi.org/simple, https://pypi.nvidia.com
Looking in links: /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo2020/avx2, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo/avx2, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo2020/generic, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/gentoo/generic, /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic
Collecting cuml-cu11==23.10.*
Downloading cuml-cu11-23.10.0.tar.gz (6.8 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [16 lines of output]
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "/tmp/pip-install-p4a44k3u/cuml-cu11_409cf69ac8f24629a1ad58b782afdc08/setup.py", line 137, in <module>
raise RuntimeError(open("ERROR.txt", "r").read())
RuntimeError:
###########################################################################################
The package you are trying to install is only a placeholder project on PyPI.org repository.
This package is hosted on NVIDIA Python Package Index.
This package can be installed as:
$ pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com cuml-cu11
```
###########################################################################################
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details.
Here is the output from nvidia-smi:
$ nvidia-smi
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 Tesla V100-SXM2-32GB On | 00000000:18:00.0 Off | 0 |
| N/A 33C P0 41W / 300W| 3MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2-32GB On | 00000000:3B:00.0 Off | 0 |
| N/A 33C P0 41W / 300W| 3MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 2 Tesla V100-SXM2-32GB On | 00000000:86:00.0 Off | 0 |
| N/A 35C P0 41W / 300W| 3MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 3 Tesla V100-SXM2-32GB On | 00000000:AF:00.0 Off | 0 |
| N/A 35C P0 42W / 300W| 3MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+
@alif-munim Can you share the output of each of these commands? I'm interested in getting to the bottom of this, so we can better troubleshoot user issues like this in the future.
python -VV
(extra verbosity about your Python version and build)pip -V
(get the pip version)uname -a
(to get kernel/CPU information)ldconfig -V
(to get your system's glibc version)cat /etc/os-release
(or cat /etc/lsb-release
or some similar source of information about your OS version)According to PyPI https://pypi.org/project/cuml-cu11/#history, it has a requirement python >= 3.9
. In one conda env, I successfully installed it with python 3.10.14
. However, in another with python 3.8.18
I failed.
In order to install cuml_cu11-23.4.1, enter “https://pypi.nvidia.com”, then you need download and install the following installation packages in order. If there are other errors, continue downloading and installing:
-ptxcompiler-cu11-0.8.1. post1 -cubinlinker cu11-0.3.0.post2 -rmm-cu11-23.4.1 -cudf_cu11-23.4.1 -dask_cudf_cu11-23.4.1 -pylibraft_cu11-23.4.1 -ucx_py_cu11-0.31.1 -raft_dask_cu11-23.4.1 -cuml_cu11-23.4.1
I updated my python 3.8 to 3.9, and the problem was solved!
I am working on Windows and want to download dinov2. But I after executed this code "pip install --extra-index-url https://pypi.nvidia.com/ cuml-cu11" , I am getting this error:
The installation of cuml-cu11 for version 24.8.0 failed.
This is a special placeholder package which downloads a real wheel package
from https://pypi.nvidia.com/. If https://pypi.nvidia.com/ is not reachable, we
cannot download the real wheel file to install.
You might try installing this package via
$ pip install --extra-index-url https://pypi.nvidia.com/ cuml-cu11
Here is some debug information about your platform to include in any bug
report:
Python Version: CPython 3.9.17
Operating System: Windows 10
CPU Architecture: AMD64
Driver Version: 516.01
CUDA Version: 11.7
_openmp_mutex 4.5 2_gnu conda-forge antlr4-python3-runtime 4.9.3 pypi_0 pypi blas 2.124 mkl conda-forge blas-devel 3.9.0 24_win64_mkl conda-forge brotli-python 1.1.0 py39ha51f57c_2 conda-forge bzip2 1.0.8 h2466b09_7 conda-forge ca-certificates 2024.8.30 h56e8100_0 conda-forge certifi 2024.8.30 pyhd8ed1ab_0 conda-forge cffi 1.17.1 py39ha55e580_0 conda-forge charset-normalizer 3.4.0 pyhd8ed1ab_0 conda-forge cloudpickle 3.1.0 pypi_0 pypi cmake 3.30.5 pypi_0 pypi colorama 0.4.6 pypi_0 pypi cudatoolkit 11.7.1 haa0b59a_13 conda-forge cython 3.0.11 pypi_0 pypi filelock 3.16.1 pyhd8ed1ab_0 conda-forge freetype 2.12.1 hdaf720e_2 conda-forge fsspec 2024.9.0 pypi_0 pypi fvcore 0.1.5.post20221221 pypi_0 pypi h2 4.1.0 pyhd8ed1ab_0 conda-forge hpack 4.0.0 pyh9f0ad1d_0 conda-forge hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge idna 3.10 pyhd8ed1ab_0 conda-forge intel-openmp 2024.2.1 h57928b3_1083 conda-forge iopath 0.1.10 pypi_0 pypi jinja2 3.1.4 pyhd8ed1ab_0 conda-forge jpeg 9e hcfcfb64_3 conda-forge lcms2 2.15 ha5c8aab_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libblas 3.9.0 24_win64_mkl conda-forge libcblas 3.9.0 24_win64_mkl conda-forge libdeflate 1.17 hcfcfb64_0 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libgcc 14.2.0 h1383e82_1 conda-forge libgfortran 14.2.0 h719f0c7_1 conda-forge libgfortran5 14.2.0 hf020157_1 conda-forge libgomp 14.2.0 h1383e82_1 conda-forge liblapack 3.9.0 24_win64_mkl conda-forge liblapacke 3.9.0 24_win64_mkl conda-forge libpng 1.6.44 h3ca93ac_0 conda-forge libsqlite 3.46.1 h2466b09_0 conda-forge libtiff 4.5.0 hf8721a0_2 conda-forge libuv 1.49.2 h2466b09_0 conda-forge libwebp-base 1.4.0 hcfcfb64_0 conda-forge libwinpthread 12.0.0.r4.gg4f2fc60ca h57928b3_8 conda-forge libxcb 1.13 0 conda-forge libzlib 1.3.1 h2466b09_2 conda-forge markupsafe 3.0.2 py39hf73967f_0 conda-forge mkl 2024.1.0 h66d3029_694 conda-forge mkl-devel 2024.1.0 h57928b3_694 conda-forge mkl-include 2024.1.0 h66d3029_694 conda-forge mpmath 1.3.0 pyhd8ed1ab_0 conda-forge mypy-extensions 1.0.0 pypi_0 pypi networkx 3.2.1 pyhd8ed1ab_0 conda-forge numpy 2.0.2 py39h60232e0_0 conda-forge nvidia-pyindex 1.0.9 pypi_0 pypi omegaconf 2.3.0 pypi_0 pypi openjpeg 2.5.0 ha2aaf27_2 conda-forge openssl 3.3.2 h2466b09_0 conda-forge packaging 24.1 pypi_0 pypi pillow 11.0.0 pypi_0 pypi pip 24.2 pyh8b19718_1 conda-forge portalocker 2.10.1 pypi_0 pypi pycparser 2.22 pyhd8ed1ab_0 conda-forge pyre-extensions 0.0.23 pypi_0 pypi pysocks 1.7.1 pyh0701188_6 conda-forge python 3.9.17 h4de0772_0_cpython conda-forge python_abi 3.9 5_cp39 conda-forge pytorch 2.0.0 py3.9_cpu_0 pytorch pytorch-mutex 1.0 cpu pytorch pywin32 308 pypi_0 pypi pyyaml 6.0.2 pypi_0 pypi requests 2.32.3 pyhd8ed1ab_0 conda-forge setuptools 75.2.0 pypi_0 pypi submitit 1.5.2 pypi_0 pypi sympy 1.13.1 pypi_0 pypi tabulate 0.9.0 pypi_0 pypi tbb 2021.7.0 h91493d7_0 conda-forge termcolor 2.5.0 pypi_0 pypi tk 8.6.13 h5226925_1 conda-forge torch 2.5.0 pypi_0 pypi torchaudio 2.5.0 pypi_0 pypi torchmetrics 0.10.3 pypi_0 pypi torchvision 0.20.0 pypi_0 pypi tqdm 4.66.5 pypi_0 pypi typing-inspect 0.9.0 pypi_0 pypi typing_extensions 4.12.2 pyha770c72_0 conda-forge tzdata 2024b hc8b5060_0 conda-forge ucrt 10.0.22621.0 h57928b3_1 conda-forge urllib3 2.2.3 pyhd8ed1ab_0 conda-forge vc 14.3 h8a93ad2_22 conda-forge vc14_runtime 14.40.33810 hcc2c482_22 conda-forge vs2015_runtime 14.40.33810 h3bf8584_22 conda-forge wheel 0.44.0 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 pyh7428d3b_7 conda-forge xformers 0.0.18 pypi_0 pypi xorg-libxau 1.0.11 h0e40799_1 conda-forge xorg-libxdmcp 1.1.5 h0e40799_0 conda-forge xz 5.2.6 h8d14728_0 conda-forge yacs 0.1.8 pypi_0 pypi zstandard 0.23.0 py39h9bf74da_1 conda-forge zstd 1.5.6 h0ea2cb4_0 conda-forge
Is it possible to work in Windows with DINO?
I am following the instruction of https://rapids.ai/pip.html#install When I'm running !pip install cuml-cu11 --extra-index-url=https://pypi.ngc.nvidia.com in colab getting this error Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/, https://pypi.ngc.nvidia.com/ Collecting cuml-cu11 Using cached cuml_cu11-23.2.0.tar.gz (6.5 kB) error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> See above for output.
note: This error originates from a subprocess, and is likely not a problem with pip. Preparing metadata (setup.py) ... error error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details.