Closed davidnoz123 closed 4 years ago
This works for me with a fresh nightly build install but fails with stable (0.14). It seems to come from cuml prims:
Any ideas what could be the issue here @dantegd @cjnolet ?
"no kernel image is available for execution on the device" typically means that you're using an unsupported GPU architecture.
Could you dump the output of nvidia-smi
here?
Thanks for your replies.
I tried the nightly build but I got the same problem as before.
Note that I'm using Tesla P100s, which I believe are supported?
Below is my conda list
and nvidia-smi
# packages in environment at /home/david/anaconda3:
#
# Name Version Build Channel
_ipyw_jlab_nb_ext_conf 0.1.0 py37_0
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 0_gnu conda-forge
aiohttp 3.6.2 py37h516909a_0 conda-forge
anaconda-client 1.7.2 py37_0
anaconda-navigator 1.9.12 py37_0
appdirs 1.4.3 py_1 conda-forge
arrow-cpp 0.15.0 py37h5ac5442_0 conda-forge
async-timeout 3.0.1 py_1000 conda-forge
attrs 19.3.0 py_0
backcall 0.1.0 py37_0
backports 1.0 py_2
backports.functools_lru_cache 1.6.1 py_0
backports.tempfile 1.0 py_1
backports.weakref 1.0.post1 py_1
beautifulsoup4 4.9.1 py37_0
blas 1.0 mkl anaconda
bleach 3.1.4 py_0
bokeh 1.4.0 py37hc8dfbb8_1 conda-forge
boost 1.70.0 py37h9de70de_1 conda-forge
boost-cpp 1.70.0 h8e57a91_2 conda-forge
brotli 1.0.7 he1b5a44_1002 conda-forge
bzip2 1.0.8 h7b6447c_0
c-ares 1.15.0 h516909a_1001 conda-forge
ca-certificates 2020.1.1 0 anaconda
cairo 1.16.0 hcf35c78_1003 conda-forge
certifi 2020.4.5.1 py37_0 anaconda
cffi 1.14.0 py37h2e261b9_0
cfitsio 3.470 hb60a0a2_2 conda-forge
chardet 3.0.4 py37_1003
click 7.1.2 py_0
click-plugins 1.1.1 py_0 conda-forge
cligj 0.5.0 py_0 conda-forge
cloudpickle 1.4.1 py_0 conda-forge
clyent 1.2.2 py37_1
colorcet 2.0.1 py_0 conda-forge
conda 4.8.3 py37_0 anaconda
conda-build 3.18.11 py37_0
conda-env 2.6.0 1
conda-package-handling 1.6.1 py37h7b6447c_0
conda-verify 3.4.2 py_1
cryptography 2.9.2 py37h1ba5d50_0
cudatoolkit 10.1.243 h6bb024c_0 nvidia
cudf 0.15.0a200612 py37_g046385d16_1192 rapidsai-nightly
cudnn 7.6.0 cuda10.1_0 nvidia
cugraph 0.15.0a200616 py37_gaeee8aae_274 rapidsai-nightly
cuml 0.15.0a200616 cuda10.1_py37_g24812e323_458 rapidsai-nightly
cupy 7.5.0 py37h0632833_0 conda-forge
curl 7.68.0 hf8cf82a_0 conda-forge
cusignal 0.15.0a200616 py37_62 rapidsai-nightly
cuspatial 0.15.0a200615 py37_g091c1c1_128 rapidsai-nightly
cuxfilter 0.15.0a200616 py37_86 rapidsai-nightly
cycler 0.10.0 py_2 conda-forge
cytoolz 0.10.1 py37h516909a_0 conda-forge
dask 2.18.1 py_0 conda-forge
dask-core 2.18.1 py_0 conda-forge
dask-cuda 0.15.0a200616 py37_16 rapidsai-nightly
dask-cudf 0.15.0a200612 py37_ge5dd80b3f_1252 rapidsai-nightly
dask-xgboost 0.2.0.dev28 cuda10.1py37_0 rapidsai-nightly
datashader 0.10.0 py_0 conda-forge
datashape 0.5.4 py_1 conda-forge
dbus 1.13.14 hb2f20db_0
decorator 4.4.2 py_0
defusedxml 0.6.0 py_0
dill 0.3.1.1 pypi_0 pypi
diskcache 4.1.0 pypi_0 pypi
distributed 2.18.0 py37hc8dfbb8_0 conda-forge
dlpack 0.2 he1b5a44_1 conda-forge
double-conversion 3.1.5 he1b5a44_2 conda-forge
entrypoints 0.3 py37_0
expat 2.2.6 he6710b0_0
fastavro 0.23.4 py37h8f50634_0 conda-forge
fastrlock 0.5 py37h3340039_0 conda-forge
filelock 3.0.12 py_0
fiona 1.8.13 py37h900e953_0 conda-forge
fontconfig 2.13.1 h86ecdb6_1001 conda-forge
freetype 2.9.1 h8a8886c_1
freexl 1.0.5 h14c3975_1002 conda-forge
fsspec 0.7.4 py_0 conda-forge
future 0.18.2 py37_1
gdal 3.0.2 py37hbb6b9fb_2 conda-forge
geopandas 0.7.0 py_1 conda-forge
geos 3.7.2 he1b5a44_2 conda-forge
geotiff 1.5.1 h32362d2_6 conda-forge
gflags 2.2.2 he1b5a44_1002 conda-forge
giflib 5.1.7 h516909a_1 conda-forge
glib 2.63.1 h5a9c865_0
glob2 0.7 py_0
glog 0.4.0 h49b9bf7_3 conda-forge
gmp 6.1.2 h6c8ec71_1
google-auth 1.17.2 pypi_0 pypi
grpc-cpp 1.23.0 h18db393_0 conda-forge
grpcio 1.29.0 pypi_0 pypi
gst-plugins-base 1.14.5 h0935bb2_2 conda-forge
gstreamer 1.14.5 h36ae1b5_2 conda-forge
hdf4 4.2.13 hf30be14_1003 conda-forge
hdf5 1.10.5 nompi_h3c11f04_1104 conda-forge
heapdict 1.0.1 py_0 conda-forge
horovod 0.19.4 pypi_0 pypi
icu 64.2 he1b5a44_1 conda-forge
idna 2.9 py_1
imagecodecs-lite 2019.12.3 py37h03ebfcd_1 conda-forge
imageio 2.8.0 py_0 conda-forge
importlib-metadata 1.6.0 py37_0
importlib_metadata 1.6.0 0
intel-openmp 2020.1 217 anaconda
ipykernel 5.1.4 py37h39e3cac_0
ipython 7.13.0 py37h5ca1d4c_0
ipython_genutils 0.2.0 py37_0
ipywidgets 7.5.1 py_0
jedi 0.17.0 py37_0
jinja2 2.11.2 py_0
joblib 0.15.1 py_0 conda-forge
jpeg 9d h516909a_0 conda-forge
json-c 0.13.1 hbfbb72e_1002 conda-forge
json5 0.9.5 py_0
jsonschema 3.2.0 py37_0
jupyter-server-proxy 1.5.0 py_0 conda-forge
jupyter_client 6.1.3 py_0
jupyter_core 4.6.3 py37_0
jupyterlab 1.2.6 pyhf63ae98_0
jupyterlab-nvdashboard 0.3.1 pypi_0 pypi
jupyterlab_server 1.1.4 py_0
kealib 1.4.13 hec59c27_0 conda-forge
keras-preprocessing 1.1.2 pypi_0 pypi
kiwisolver 1.2.0 py37h99015e2_0 conda-forge
krb5 1.16.4 h2fd8d38_0 conda-forge
ld_impl_linux-64 2.33.1 h53a641e_7
libarchive 3.3.3 hb44662c_1005 conda-forge
libcudf 0.15.0a200612 cuda10.1_g046385d16_1192 rapidsai-nightly
libcugraph 0.15.0a200616 cuda10.1_gaeee8aae_274 rapidsai-nightly
libcuml 0.15.0a200616 cuda10.1_g24812e323_458 rapidsai-nightly
libcumlprims 0.15.0a200607 cuda10.1_39 rapidsai-nightly
libcurl 7.68.0 hda55be3_0 conda-forge
libcuspatial 0.15.0a200616 cuda10.1_g68a198e_135 rapidsai-nightly
libdap4 3.20.4 hd3bb157_0 conda-forge
libedit 3.1.20181209 hc058e9b_0
libevent 2.1.10 h72c5cf5_0 conda-forge
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.2.0 h24d8f2e_2 conda-forge
libgdal 3.0.2 hc7cfd23_2 conda-forge
libgfortran-ng 7.3.0 hdf63c60_0 anaconda
libgomp 9.2.0 h24d8f2e_2 conda-forge
libhwloc 2.1.0 h3c4fd83_0 conda-forge
libiconv 1.15 h516909a_1006 conda-forge
libkml 1.3.0 h4fcabce_1010 conda-forge
liblief 0.10.1 he6710b0_0
libllvm8 8.0.1 hc9558a2_0 conda-forge
libnetcdf 4.7.1 nompi_h94020b1_102 conda-forge
libnvstrings 0.15.0a200604 cuda10.1_gaeda0c0_774 rapidsai-nightly
libpng 1.6.37 hbc83047_0
libpq 11.5 hd9ab2ff_2 conda-forge
libprotobuf 3.8.0 h8b12597_0 conda-forge
librmm 0.15.0a200616 cuda10.1_g9f65999_191 rapidsai-nightly
libsodium 1.0.16 h1bed415_0
libspatialindex 1.9.3 he1b5a44_3 conda-forge
libspatialite 4.3.0a h4f6d029_1032 conda-forge
libssh2 1.9.0 hab1572f_2 conda-forge
libstdcxx-ng 9.1.0 hdf63c60_0
libtiff 4.0.10 h57b8799_1003 conda-forge
libuuid 2.32.1 h14c3975_1000 conda-forge
libuv 1.34.0 h516909a_0 conda-forge
libwebp 1.0.2 h302c0c8_3 conda-forge
libxcb 1.13 h1bed415_1
libxgboost 1.1.0dev.rapidsai0.14 cuda10.1_0 rapidsai-nightly
libxml2 2.9.10 hee79883_0 conda-forge
llvmlite 0.32.1 py37h5202443_0 conda-forge
locket 0.2.0 py_2 conda-forge
lz4-c 1.8.3 he1b5a44_1001 conda-forge
lzo 2.10 h7b6447c_2
markdown 3.2.2 py_0 conda-forge
markupsafe 1.1.1 py37h7b6447c_0
matplotlib-base 3.2.1 py37h30547a4_0 conda-forge
mistune 0.8.4 py37h7b6447c_0
mkl 2019.4 243 anaconda
mkl-service 2.3.0 py37he904b0f_0 anaconda
mkl_fft 1.0.15 py37ha843d7b_0 anaconda
mkl_random 1.1.0 py37hd6b4f25_0 anaconda
msgpack-python 1.0.0 py37h99015e2_1 conda-forge
multidict 4.7.6 pypi_0 pypi
multipledispatch 0.6.0 py_0 conda-forge
munch 2.5.0 py_0 conda-forge
navigator-updater 0.2.1 py37_0
nbconvert 5.6.1 py37_0
nbformat 5.0.6 py_0
nccl 2.5.7.1 h51cf6c1_0 conda-forge
ncurses 6.2 he6710b0_1
networkx 2.4 py_1 conda-forge
nodejs 13.13.0 hf5d1a2b_0 conda-forge
notebook 6.0.3 py37_0
numba 0.49.1 py37h0573a6f_0
numpy 1.18.1 py37h4f9e942_0 anaconda
numpy-base 1.18.1 py37hde5b4d6_1 anaconda
nvstrings 0.15.0a200604 py37_gaeda0c0_774 rapidsai-nightly
olefile 0.46 py37_0
openjpeg 2.3.1 h21c5421_1 conda-forge
openssl 1.1.1g h7b6447c_0 anaconda
opt-einsum 3.2.1 pypi_0 pypi
packaging 20.4 pyh9f0ad1d_0 conda-forge
pandas 0.25.3 py37hb3f55d8_0 conda-forge
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py37_1
panel 0.6.4 0 conda-forge
param 1.9.3 py_0 conda-forge
parquet-cpp 1.5.1 2 conda-forge
parso 0.7.0 py_0
partd 1.1.0 py_0 conda-forge
patchelf 0.10 he6710b0_0
pcre 8.43 he6710b0_0
petastorm 0.9.2 pypi_0 pypi
pexpect 4.8.0 py37_0
pickleshare 0.7.5 py37_0
pillow 6.2.1 py37h6b7be26_0 conda-forge
pip 20.0.2 py37_3
pixman 0.38.0 h516909a_1003 conda-forge
pkginfo 1.5.0.1 py37_0
plotly 4.8.1 py_0
poppler 0.67.0 h14e79db_8 conda-forge
poppler-data 0.4.9 1 conda-forge
postgresql 11.5 hc63931a_2 conda-forge
proj 6.2.1 hc80f0dc_0 conda-forge
prometheus_client 0.7.1 py_0
prompt-toolkit 3.0.5 py_0
prompt_toolkit 3.0.5 0
protobuf 3.12.2 pypi_0 pypi
psutil 5.7.0 py37h7b6447c_0
ptyprocess 0.6.0 py37_0
py-lief 0.10.1 py37h403a769_0
py-xgboost 1.1.0dev.rapidsai0.14 cuda10.1py37_0 rapidsai-nightly
pyarrow 0.17.1 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pycosat 0.6.3 py37h7b6447c_0
pycparser 2.20 py_0
pyct 0.4.6 py_0 conda-forge
pyct-core 0.4.6 py_0 conda-forge
pyee 7.0.2 pyh9f0ad1d_0 conda-forge
pygments 2.6.1 py_0
pynvml 8.0.4 py_0 conda-forge
pyopenssl 19.1.0 py37_0
pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge
pyppeteer 0.0.25 py_1 conda-forge
pyproj 2.4.2.post1 py37h12732c1_0 conda-forge
pyqt 5.9.2 py37h05f1152_2
pyrsistent 0.16.0 py37h7b6447c_0
pysocks 1.7.1 py37_0
python 3.7.6 cpython_h8356626_6 conda-forge
python-dateutil 2.8.1 py_0
python-libarchive-c 2.9 py_0
python-snappy 0.5.4 py37he6710b0_0
python_abi 3.7 1_cp37m conda-forge
pytz 2020.1 py_0
pyviz_comms 0.7.5 pyh9f0ad1d_0 conda-forge
pywavelets 1.1.1 py37h03ebfcd_1 conda-forge
pyyaml 5.3.1 py37h7b6447c_0
pyzmq 18.1.1 py37he6710b0_0
qt 5.9.7 h0c104cb_3 conda-forge
qtpy 1.9.0 py_0
rapids 0.15.0 cuda10.1_py37_182 rapidsai-nightly
rapids-xgboost 0.15.0 cuda10.1_py37_182 rapidsai-nightly
re2 2020.04.01 he1b5a44_0 conda-forge
readline 8.0 h7b6447c_0
requests 2.23.0 py37_0
retrying 1.3.3 py37_2
ripgrep 11.0.2 he32d670_0
rmm 0.15.0a200616 py37_g9f65999_191 rapidsai-nightly
rsa 4.6 pypi_0 pypi
rtree 0.9.4 py37h8526d28_1 conda-forge
ruamel_yaml 0.15.87 py37h7b6447c_0
scikit-image 0.17.2 py37h0da4684_1 conda-forge
scikit-learn 0.22.1 py37hd81dba3_0
scipy 1.4.1 py37h0b6359f_0
send2trash 1.5.0 py37_0
setuptools 45.2.0 py37_0
shapely 1.6.4 py37hec07ddf_1006 conda-forge
simpervisor 0.3 py_1 conda-forge
sip 4.19.8 py37hf484d3e_0
six 1.15.0 py_0
snappy 1.1.7 hbae5bb6_3
sortedcontainers 2.2.2 pyh9f0ad1d_0 conda-forge
soupsieve 2.0.1 py_0
spdlog 1.6.1 hc9558a2_0 conda-forge
sqlite 3.31.1 h62c20be_1
tbb 2018.0.5 h2d50403_0 conda-forge
tblib 1.6.0 py_0 conda-forge
tensorboard 2.2.2 pypi_0 pypi
tensorboard-plugin-wit 1.6.0.post3 pypi_0 pypi
termcolor 1.1.0 pypi_0 pypi
terminado 0.8.3 py37_0
testpath 0.4.4 py_0
thrift-cpp 0.12.0 hf3afdfd_1004 conda-forge
tifffile 2020.6.3 py_0 conda-forge
tiledb 1.6.2 h69c774e_1 conda-forge
tk 8.6.10 hed695b0_0 conda-forge
toolz 0.10.0 py_0 conda-forge
tornado 6.0.4 py37h7b6447c_1
tqdm 4.46.0 py_0
traitlets 4.3.3 py37_0
tzcode 2020a h516909a_0 conda-forge
ucx 1.8.0+g49982d4 cuda10.1_25 rapidsai-nightly
ucx-py 0.15.0a200616+g49982d4 py37_69 rapidsai-nightly
uriparser 0.9.3 he1b5a44_1 conda-forge
urllib3 1.25.8 py37_0
wcwidth 0.1.9 py_0
webencodings 0.5.1 py37_1
websockets 8.1 py37h8f50634_1 conda-forge
wheel 0.34.2 py37_0
widgetsnbextension 3.5.1 py37_0
xarray 0.15.1 py_0 conda-forge
xerces-c 3.2.2 h8412b87_1004 conda-forge
xgboost 1.1.0dev.rapidsai0.14 cuda10.1py37_0 rapidsai-nightly
xmltodict 0.12.0 py_0
xorg-kbproto 1.0.7 h14c3975_1002 conda-forge
xorg-libice 1.0.10 h516909a_0 conda-forge
xorg-libsm 1.2.3 h84519dc_1000 conda-forge
xorg-libx11 1.6.9 h516909a_0 conda-forge
xorg-libxext 1.3.4 h516909a_0 conda-forge
xorg-libxrender 0.9.10 h516909a_1002 conda-forge
xorg-renderproto 0.11.1 h14c3975_1002 conda-forge
xorg-xextproto 7.3.0 h14c3975_1002 conda-forge
xorg-xproto 7.0.31 h14c3975_1007 conda-forge
xz 5.2.5 h7b6447c_0
yaml 0.1.7 had09818_2
yarl 1.4.2 pypi_0 pypi
zeromq 4.3.1 he6710b0_3
zict 2.0.0 py_0 conda-forge
zipp 3.1.0 py_0
zlib 1.2.11 h7b6447c_3
zstd 1.4.0 h3b9ef0a_0 conda-forge
(base) david@poc-gpu-host:~/antuit_demand_forecasting/antuit$ nvidia-smi
Tue Jun 16 18:27:09 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.126.02 Driver Version: 418.126.02 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-PCIE... Off | 00000001:00:00.0 Off | Off |
| N/A 35C P0 26W / 250W | 154MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-PCIE... Off | 00000002:00:00.0 Off | Off |
| N/A 32C P0 25W / 250W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 2661 G /usr/lib/xorg/Xorg 65MiB |
| 0 2787 G /usr/bin/gnome-shell 88MiB |
+-----------------------------------------------------------------------------+
This appears to be an issue with the compilation options for the cumlprims supporting library in 0.14, which is compiled for newer GPUs. We are working on a fix now. Thank you for reporting this!
All good! Thanks for taking time to look into it!
@davidnoz123 a new libcumlprims version (0.14.1) has been released for the release version that has fixed the issue. For the nightly 0.15 version there are upcoming packages that should be fixed as well in the next couple of days at the latest.
Wow! You guys do fast service! Thanks loads! ( :
@davidnoz123 thanks for reporting the issue, I'll tentatively close this as it's probably resolved, feel free to reopen if you still experience problems after updating libcumlprims.
Tested and works with a new conda environment and:-
conda install -c rapidsai -c nvidia -c conda-forge -c defaults rapids=0.14 python=3.7 cudatoolkit=10.1
on:-
Linux poc-gpu-host 5.3.0-1028-azure #29~18.04.1-Ubuntu SMP Fri Jun 5 14:32:34 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
with:-
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.126.02 Driver Version: 418.126.02 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-PCIE... Off | 00000001:00:00.0 Off | Off |
| N/A 35C P0 26W / 250W | 153MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-PCIE... Off | 00000002:00:00.0 Off | Off |
| N/A 32C P0 25W / 250W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 2661 G /usr/lib/xorg/Xorg 65MiB |
| 0 2787 G /usr/bin/gnome-shell 88MiB |
+-----------------------------------------------------------------------------+
Great guys! Thanks again!
I've cobbled together a couple of dask_cuda examples I've found on the web (see below). I believe it should work but I get a "no kernel image is available for execution on the device" exception on line "XT = cumlModel.fit_transform(X_cudf)". Can anyone get this working on their setup? If so, then can you reply with your "conda list" output? Thanks in advance!