Open tmbdev opened 2 days ago
It seems to me that this is the same problem as https://github.com/ray-project/ray/issues/48236 cc @alexeykudinkin
Thanks. Yes, that's pretty much the same problem.
But it's more widespread than JSONL or JSON. You can't work around this problem with read_text
or even read_binary_file
since they all suffer from the same problem on the same dataset. Meaning, if it's too big to read with one of them it's usually too big to read with any of them.
Also, when reading a single file, it's not that hard to split. But becomes an even bigger problem for terabyte-petabyte scale datasets, where resplitting the data really isn't an option anymore, both because it takes a long time and because you end up with a ridiculous number of shards.
As I was saying, a short term fix would be to add optional block_size arguments to the read_text, read_json, etc., something that is independently useful when dealing with large shards/blocks.
Also, independently, making PyArrow compiled with 64bit offsets the default for the Python distributions would probably be a good idea at this point. (To me, the 1100 shard problem above is a fairly small data processing task.)
@tmbdev can you please paste the whole stacktrace so that we can verify that it's indeed the same issue?
dataset = ray.data.read_text(files, ray_remote_args={"num_cpus": 45})
dataset = dataset.map_batches(convert_batch, batch_size=1000)
dataset.show(1)
2024-10-30 01:23:07,902 ERROR streaming_executor_state.py:469 -- An exception was raised from a task of operator "ReadText". Dataset execution will now abort. To ignore this exception and continue, set DataContext.max_errored_blocks.
2024-10-30 01:23:07,906 ERROR exceptions.py:73 -- Exception occurred in Ray Data or Ray Core internal code. If you continue to see this error, please open an issue on the Ray project GitHub page with the full stack trace below: https://github.com/ray-project/ray/issues/new/choose
2024-10-30 01:23:07,907 ERROR exceptions.py:81 -- Full stack trace:
Traceback (most recent call last):
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/exceptions.py", line 49, in handle_trace
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/plan.py", line 428, in execute_to_iterator
bundle_iter = itertools.chain([next(gen)], gen)
^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/executor.py", line 37, in __next__
return self.get_next()
^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/legacy_compat.py", line 76, in get_next
bundle = self._base_iterator.get_next(output_split_idx)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 153, in get_next
item = self._outer._output_node.get_output_blocking(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 296, in get_output_blocking
raise self._exception
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 232, in run
continue_sched = self._scheduling_loop_step(self._topology)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 287, in _scheduling_loop_step
num_errored_blocks = process_completed_tasks(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 470, in process_completed_tasks
raise e from None
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 437, in process_completed_tasks
bytes_read = task.on_data_ready(
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/physical_operator.py", line 105, in on_data_ready
raise ex from None
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/physical_operator.py", line 101, in on_data_ready
ray.get(block_ref)
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/worker.py", line 2691, in get
values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/worker.py", line 871, in get_objects
raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(ArrowInvalid): ray::ReadText() (pid=1937773, ip=10.128.0.4)
for b_out in map_transformer.apply_transform(iter(blocks), ctx):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/operators/map_transformer.py", line 395, in __call__
yield output_buffer.next()
^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/output_buffer.py", line 94, in next
block_remainder = block.slice(
^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/arrow_block.py", line 288, in slice
view = _copy_table(view)
^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/arrow_block.py", line 731, in _copy_table
return transform_pyarrow.combine_chunks(table)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/arrow_ops/transform_pyarrow.py", line 339, in combine_chunks
arr = col.combine_chunks()
^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 754, in pyarrow.lib.ChunkedArray.combine_chunks
File "pyarrow/array.pxi", line 4579, in pyarrow.lib.concat_arrays
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays
ds = ray.data.read_binary_files(files, ray_remote_args={"num_cpus": 45})
ds = ds.flat_map(process_chunk)
ds.show(1)
2024-10-29 21:41:46,290 ERROR streaming_executor_state.py:469 -- An exception was raised from a task of operator "ReadBinary". Dataset execution will now abort. To ignore this exception and continue, set DataContext.max_errored_blocks.
2024-10-29 21:41:46,297 ERROR exceptions.py:73 -- Exception occurred in Ray Data or Ray Core internal code. If you continue to see this error, please open an issue on the Ray project GitHub page with the full stack trace below: https://github.com/ray-project/ray/issues/new/choose
2024-10-29 21:41:46,298 ERROR exceptions.py:81 -- Full stack trace:
Traceback (most recent call last):
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/exceptions.py", line 49, in handle_trace
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/plan.py", line 428, in execute_to_iterator
bundle_iter = itertools.chain([next(gen)], gen)
^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/executor.py", line 37, in __next__
return self.get_next()
^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/legacy_compat.py", line 76, in get_next
bundle = self._base_iterator.get_next(output_split_idx)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 153, in get_next
item = self._outer._output_node.get_output_blocking(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 296, in get_output_blocking
raise self._exception
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 232, in run
continue_sched = self._scheduling_loop_step(self._topology)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor.py", line 287, in _scheduling_loop_step
num_errored_blocks = process_completed_tasks(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 470, in process_completed_tasks
raise e from None
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/streaming_executor_state.py", line 437, in process_completed_tasks
bytes_read = task.on_data_ready(
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/physical_operator.py", line 105, in on_data_ready
raise ex from None
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/interfaces/physical_operator.py", line 101, in on_data_ready
ray.get(block_ref)
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/worker.py", line 2691, in get
values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/_private/worker.py", line 871, in get_objects
raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(ArrowConversionError): ray::ReadBinary() (pid=1938227, ip=10.128.0.4)
^^^^^^^^^^^^^
File "pyarrow/array.pxi", line 358, in pyarrow.lib.array
File "pyarrow/array.pxi", line 85, in pyarrow.lib._ndarray_to_array
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2626945332
The above exception was the direct cause of the following exception:
ray::ReadBinary() (pid=1938227, ip=10.128.0.4)
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/operators/map_operator.py", line 461, in _map_task
for b_out in map_transformer.apply_transform(iter(blocks), ctx):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/operators/map_transformer.py", line 392, in __call__
for data in iter:
^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/execution/operators/map_transformer.py", line 253, in __call__
yield from self._block_fn(input, ctx)
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/planner/plan_read_op.py", line 95, in do_read
yield from read_task()
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/datasource/datasource.py", line 168, in __call__
yield from result
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/datasource/file_based_datasource.py", line 254, in read_task_fn
yield from read_files(read_paths)
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/datasource/file_based_datasource.py", line 220, in read_files
for block in read_stream(f, read_path):
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/datasource/binary_datasource.py", line 21, in _read_stream
yield builder.build()
^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/table_block.py", line 128, in build
tables = [self._table_from_pydict(columns)]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/data/_internal/arrow_block.py", line 166, in _table_from_pydict
columns[col_name] = convert_list_to_pyarrow_array(col, columns)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/work/anaconda3/envs/working_env/lib/python3.12/site-packages/ray/air/util/tensor_extensions/arrow.py", line 94, in convert_list_to_pyarrow_array
raise ArrowConversionError(str(enclosing_dict)) from e
ray.air.util.tensor_extensions.arrow.ArrowConversionError: Error converting data to Arrow: {'bytes': array([b'{"aliases":{"ast":[{"language":"ast","value":"\xf0\x9f\x87\xa7\xf0\x9f\x87\xaa"}],"av":[{"language":"av","value":"\xd0\x91\xd0\xb5\xd0\xbb\xd0\xb3\xd0\xb5\xd0\xbd"}],"ban":[{"langua.
@tmbdev this is a different issue -- currently convert_list_to_pyarrow_array
converts to pa.array
, while clearly your array is clearly exceeding its 2Gb limits
It looks like the first problem is the same problem, and the second one is a different one, right?
Oh, you're right @pcmoritz. I've been scrolling to the bottom and actually missed that there are 2 issues reported.
The bug isn't the crashes in those specific functions, the bug is the fact that there is no way of processing these JSONL files with Ray (as far as I know).
_As I was saying, a short term fix would be to add optional block_size arguments to the read_text, read_json
, etc., something that is independently useful when dealing with large shards/blocks._
Also, independently, making PyArrow compiled with 64bit offsets the default for the Python distributions would probably be a good idea at this point. (To me, the 1100 shard problem above is a fairly small data processing task.)
Neither of those fixes requires changes to the functions where the crashes currently occur.
Description
I have 1100 shards of 3 Gbytes of data each that I read with read_text. I cannot find any way to process them with ray.data.
I consistently get these errors:
The problem seems to be that pyarrow internally is limited to 2 Gbyte offsets. This seems like a pretty serious limitation given modern processors and datasets. It wouldn't be quite so serious if the ray.data.read_... routines consistently had a chunk_size or block_size argument that would permit on the fly splitting of files into multiple blocks, but they don't.
I don't even seem to be able to handle this by using
read_binary_file
withflat_map
, since even the output ofread_binary_file
is represented as a PyArrow table and can't hold the raw binary data.My suggestions would be:
(1) add optional block_size arguments to all readers (2) consider the support of a different/additional internal format other than PyArrow, a format not limited by 32 bit offsets
Somewhat related:
(3) instead of dealing with data partitioning in terms of total number of blocks (which is hard to do for datasets of unknown size), handle data partitioning in terms of block sizes. (4) implement a streaming_repartition(block_size)
Use case
I'm trying to read a sharded JSONL datasets whose shards happen to expand into data larger than 2GB when decompressed. Processing this dataset with ray.data seems impossible, since it is impossible even to read it with read_text.