Closed miguelgfierro closed 1 year ago
=========================== short test summary info ============================
FAILED tests/unit/recommenders/models/test_deeprec_model.py::test_xdeepfm_component_definition
FAILED tests/unit/recommenders/models/test_deeprec_model.py::test_slirec_component_definition
FAILED tests/unit/recommenders/models/test_deeprec_model.py::test_sum_component_definition
============= 3 failed, 12 passed, 7 warnings in 153.99s (0:02:33) =============
=================================== FAILURES ===================================
______________________ test_xdeepfm_component_definition _______________________
deeprec_resource_path = PosixPath('/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/tests/resources/deeprec')
@pytest.mark.gpu
def test_xdeepfm_component_definition(deeprec_resource_path):
data_path = os.path.join(deeprec_resource_path, "xdeepfm")
yaml_file = os.path.join(data_path, "xDeepFM.yaml")
if not os.path.exists(yaml_file):
download_deeprec_resources(
"https://recodatasets.z20.web.core.windows.net/deeprec/",
data_path,
"xdeepfmresources.zip",
)
hparams = prepare_hparams(yaml_file)
> model = XDeepFMModel(hparams, FFMTextIterator)
E NameError: name 'XDeepFMModel' is not defined
tests/unit/recommenders/models/test_deeprec_model.py:131: NameError
----------------------------- Captured stdout call -----------------------------
INFO:recommenders.datasets.download_utils:Downloading https://recodatasets.z20.web.core.windows.net/deeprec/xdeepfmresources.zip
----------------------------- Captured stderr call -----------------------------
0%| | 0.00/10.3k [00:00<?, ?KB/s]
68%|██████▊ | 6.97k/10.3k [00:00<00:00, 69.7kKB/s]
100%|██████████| 10.3k/10.3k [00:00<00:00, 81.3kKB/s]
------------------------------ Captured log call -------------------------------
INFO recommenders.datasets.download_utils:download_utils.py:38 Downloading https://recodatasets.z20.web.core.windows.net/deeprec/xdeepfmresources.zip
_______________________ test_slirec_component_definition _______________________
sequential_files = ('/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/tests/resources/deeprec/slirec', '/mnt/azureml/cr/j/e49a1d...ab.pkl', '/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/tests/resources/deeprec/slirec/category_vocab.pkl')
deeprec_config_path = PosixPath('/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/config')
@pytest.mark.gpu
def test_slirec_component_definition(sequential_files, deeprec_config_path):
yaml_file = os.path.join(deeprec_config_path, "sli_rec.yaml")
data_path, user_vocab, item_vocab, cate_vocab = sequential_files
hparams = prepare_hparams(
yaml_file,
train_num_ngs=4,
embed_l2=0.0,
layer_l2=0.0,
learning_rate=0.001,
epochs=1,
MODEL_DIR=os.path.join(data_path, "model"),
SUMMARIES_DIR=os.path.join(data_path, "summary"),
user_vocab=user_vocab,
item_vocab=item_vocab,
cate_vocab=cate_vocab,
need_sample=True,
)
> model = SLI_RECModel(hparams, SequentialIterator)
tests/unit/recommenders/models/test_deeprec_model.py:248:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
recommenders/models/deeprec/models/sequential/sequential_base_model.py:51: in __init__
super().__init__(hparams, iterator_creator, graph=self.graph, seed=seed)
recommenders/models/deeprec/models/base_model.py:56: in __init__
self.logit = self._build_graph()
recommenders/models/deeprec/models/sequential/sequential_base_model.py:71: in _build_graph
model_output = self._build_seq_graph()
recommenders/models/deeprec/models/sequential/sli_rec.py:61: in _build_seq_graph
rnn_outputs, _ = dynamic_rnn(
/azureml-envs/azureml_c4eff4a5e459820972fa4e3ca572161c/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:383: in new_func
return func(*args, **kwargs)
/azureml-envs/azureml_c4eff4a5e459820972fa4e3ca572161c/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py:153: in error_handler
raise e.with_traceback(filtered_tb) from None
/tmp/__autograph_generated_filekos1if_z.py:110: in tf__call
ag__.if_stmt(ag__.ld(self)._linear1 is None, if_body_4, else_body_4, get_state_4, set_state_4, ('self._linear1',), 1)
/tmp/__autograph_generated_filekos1if_z.py:106: in if_body_4
ag__.ld(self)._linear1 = ag__.converted_call(ag__.ld(_Linear), ([ag__.ld(inputs), ag__.ld(m_prev)], 4 * ag__.ld(self)._num_units, True), None, fscope)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <recommenders.models.deeprec.models.sequential.rnn_cell_implement._Linear object at 0x146050352070>
args = [<tf.Tensor 'time4lstm/time4lstm_cell/strided_slice_2:0' shape=(None, 32) dtype=float32>, <tf.Tensor 'Placeholder_3:0' shape=(None, 40) dtype=float32>]
output_size = 160, build_bias = True, bias_initializer = None
kernel_initializer = None
def __init__(
self,
args,
output_size,
build_bias,
bias_initializer=None,
kernel_initializer=None,
):
self._build_bias = build_bias
> if args is None or (nest.is_sequence(args) and not args):
E AttributeError: in user code:
E
E File "/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/models/sequential/rnn_cell_implement.py", line 227, in call *
E self._linear1 = _Linear([inputs, m_prev], 4 * self._num_units, True)
E File "/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/models/sequential/rnn_cell_implement.py", line 584, in __init__ **
E if args is None or (nest.is_sequence(args) and not args):
E
E AttributeError: module 'tensorflow.python.util.nest' has no attribute 'is_sequence'
recommenders/models/deeprec/models/sequential/rnn_cell_implement.py:584: AttributeError
---------------------------- Captured stdout setup -----------------------------
INFO:recommenders.datasets.download_utils:Downloading http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Movies_and_TV_5.json.gz
INFO:recommenders.datasets.download_utils:Downloading http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/meta_Movies_and_TV.json.gz
INFO:root:start reviews preprocessing...
INFO:root:start meta preprocessing...
INFO:root:start create instances...
INFO:root:creating item2cate dict
INFO:root:getting sampled data...
INFO:root:start data processing...
INFO:root:data generating...
INFO:root:vocab generating...
INFO:root:start valid negative sampling
INFO:root:start test negative sampling
---------------------------- Captured stderr setup -----------------------------
0%| | 0.00/692k [00:00<?, ?KB/s]
0%| | 30.0/692k [00:00<55:28, 208KB/s]
0%| | 69.0/692k [00:00<48:14, 239KB/s]
0%| | 140/692k [00:00<32:43, 353KB/s]
0%| | 251/692k [00:00<22:24, 515KB/s]
0%| | 421/692k [00:00<14:09, 815KB/s]
0%| | 533/692k [00:00<12:57, 889KB/s]
0%| | 792/692k [00:00<08:49, 1.31kKB/s]
0%| | 968/692k [00:01<08:03, 1.43kKB/s]
0%| | 1.44k/692k [00:01<05:05, 2.26kKB/s]
0%| | 1.80k/692k [00:01<04:22, 2.63kKB/s]
0%| | 2.72k/692k [00:01<02:42, 4.26kKB/s]
1%| | 3.53k/692k [00:01<02:10, 5.27kKB/s]
1%| | 5.25k/692k [00:01<01:22, 8.30kKB/s]
1%| | 6.68k/692k [00:01<01:08, 9.95kKB/s]
1%|▏ | 10.4k/692k [00:01<00:40, 16.8kKB/s]
2%|▏ | 12.9k/692k [00:01<00:35, 19.2kKB/s]
3%|▎ | 17.4k/692k [00:01<00:25, 26.5kKB/s]
3%|▎ | 21.6k/692k [00:02<00:23, 28.5kKB/s]
4%|▍ | 26.1k/692k [00:02<00:20, 32.9kKB/s]
4%|▍ | 30.1k/692k [00:02<00:20, 33.0kKB/s]
5%|▌ | 34.8k/692k [00:02<00:18, 36.4kKB/s]
6%|▌ | 38.4k/692k [00:02<00:20, 31.6kKB/s]
6%|▌ | 41.7k/692k [00:02<00:22, 28.9kKB/s]
7%|▋ | 45.2k/692k [00:02<00:23, 27.5kKB/s]
7%|▋ | 48.6k/692k [00:02<00:22, 29.2kKB/s]
7%|▋ | 51.7k/692k [00:03<00:23, 27.4kKB/s]
8%|▊ | 55.0k/692k [00:03<00:23, 26.7kKB/s]
8%|▊ | 57.9k/692k [00:03<00:23, 27.3kKB/s]
9%|▉ | 61.0k/692k [00:03<00:23, 27.1kKB/s]
9%|▉ | 64.0k/692k [00:03<00:22, 27.8kKB/s]
10%|▉ | 67.1k/692k [00:03<00:22, 27.5kKB/s]
10%|█ | 70.2k/692k [00:03<00:21, 28.3kKB/s]
11%|█ | 73.4k/692k [00:03<00:21, 28.2kKB/s]
11%|█ | 76.5k/692k [00:03<00:21, 28.9kKB/s]
12%|█▏ | 79.8k/692k [00:04<00:20, 30.1kKB/s]
12%|█▏ | 82.8k/692k [00:04<00:21, 28.8kKB/s]
12%|█▏ | 86.1k/692k [00:04<00:20, 30.0kKB/s]
13%|█▎ | 89.1k/692k [00:04<00:20, 28.7kKB/s]
13%|█▎ | 92.6k/692k [00:04<00:19, 30.3kKB/s]
14%|█▍ | 95.6k/692k [00:04<00:19, 29.9kKB/s]
14%|█▍ | 98.6k/692k [00:04<00:20, 29.4kKB/s]
15%|█▍ | 102k/692k [00:04<00:19, 30.5kKB/s]
15%|█▌ | 105k/692k [00:04<00:19, 30.4kKB/s]
16%|█▌ | 108k/692k [00:05<00:18, 31.3kKB/s]
16%|█▌ | 112k/692k [00:05<00:18, 31.2kKB/s]
17%|█▋ | 115k/692k [00:05<00:19, 30.3kKB/s]
17%|█▋ | 118k/692k [00:05<00:18, 31.6kKB/s]
18%|█▊ | 121k/692k [00:05<00:18, 31.4kKB/s]
18%|█▊ | 125k/692k [00:05<00:17, 32.3kKB/s]
18%|█▊ | 128k/692k [00:05<00:17, 31.5kKB/s]
19%|█▉ | 131k/692k [00:05<00:18, 31.1kKB/s]
19%|█▉ | 134k/692k [00:05<00:20, 27.5kKB/s]
20%|█▉ | 137k/692k [00:06<00:21, 25.6kKB/s]
20%|██ | 140k/692k [00:06<00:23, 23.6kKB/s]
21%|██ | 143k/692k [00:06<00:21, 25.5kKB/s]
21%|██ | 145k/692k [00:06<00:22, 23.9kKB/s]
21%|██▏ | 148k/692k [00:06<00:23, 23.0kKB/s]
22%|██▏ | 151k/692k [00:06<00:22, 24.2kKB/s]
22%|██▏ | 153k/692k [00:06<00:23, 23.0kKB/s]
23%|██▎ | 156k/692k [00:06<00:22, 24.4kKB/s]
23%|██▎ | 159k/692k [00:06<00:22, 23.4kKB/s]
23%|██▎ | 162k/692k [00:07<00:21, 24.7kKB/s]
24%|██▎ | 164k/692k [00:07<00:22, 23.7kKB/s]
24%|██▍ | 167k/692k [00:07<00:21, 24.4kKB/s]
24%|██▍ | 169k/692k [00:07<00:21, 24.3kKB/s]
25%|██▍ | 172k/692k [00:07<00:21, 24.7kKB/s]
25%|██▌ | 175k/692k [00:07<00:20, 25.4kKB/s]
26%|██▌ | 177k/692k [00:07<00:20, 25.0kKB/s]
26%|██▌ | 180k/692k [00:07<00:20, 25.2kKB/s]
26%|██▋ | 182k/692k [00:07<00:20, 24.9kKB/s]
27%|██▋ | 185k/692k [00:08<00:20, 24.7kKB/s]
27%|██▋ | 188k/692k [00:08<00:20, 25.1kKB/s]
27%|██▋ | 190k/692k [00:08<00:19, 25.4kKB/s]
28%|██▊ | 193k/692k [00:08<00:19, 25.5kKB/s]
28%|██▊ | 196k/692k [00:08<00:19, 25.7kKB/s]
29%|██▊ | 198k/692k [00:08<00:19, 25.4kKB/s]
29%|██▉ | 201k/692k [00:08<00:19, 25.7kKB/s]
29%|██▉ | 203k/692k [00:08<00:19, 25.5kKB/s]
30%|██▉ | 206k/692k [00:08<00:18, 26.1kKB/s]
30%|███ | 209k/692k [00:08<00:18, 26.0kKB/s]
31%|███ | 211k/692k [00:09<00:18, 25.4kKB/s]
31%|███ | 214k/692k [00:09<00:18, 25.6kKB/s]
31%|███▏ | 217k/692k [00:09<00:18, 25.9kKB/s]
32%|███▏ | 220k/692k [00:09<00:17, 26.3kKB/s]
32%|███▏ | 222k/692k [00:09<00:18, 25.8kKB/s]
33%|███▎ | 225k/692k [00:09<00:17, 26.3kKB/s]
33%|███▎ | 228k/692k [00:09<00:17, 26.1kKB/s]
33%|███▎ | 231k/692k [00:09<00:17, 26.5kKB/s]
34%|███▎ | 233k/692k [00:09<00:17, 26.5kKB/s]
34%|███▍ | 236k/692k [00:09<00:17, 25.7kKB/s]
35%|███▍ | 239k/692k [00:10<00:16, 26.8kKB/s]
35%|███▍ | 242k/692k [00:10<00:16, 26.8kKB/s]
35%|███▌ | 244k/692k [00:10<00:17, 26.2kKB/s]
36%|███▌ | 247k/692k [00:10<00:16, 26.7kKB/s]
36%|███▌ | 250k/692k [00:10<00:16, 26.6kKB/s]
36%|███▋ | 253k/692k [00:10<00:19, 22.1kKB/s]
37%|███▋ | 256k/692k [00:10<00:16, 26.0kKB/s]
37%|███▋ | 259k/692k [00:10<00:18, 23.6kKB/s]
38%|███▊ | 262k/692k [00:11<00:19, 21.9kKB/s]
38%|███▊ | 264k/692k [00:11<00:19, 22.1kKB/s]
38%|███▊ | 266k/692k [00:11<00:20, 20.8kKB/s]
39%|███▉ | 268k/692k [00:11<00:21, 20.2kKB/s]
39%|███▉ | 270k/692k [00:11<00:20, 20.2kKB/s]
39%|███▉ | 273k/692k [00:11<00:20, 20.8kKB/s]
40%|███▉ | 275k/692k [00:11<00:21, 19.8kKB/s]
40%|███▉ | 277k/692k [00:11<00:20, 20.4kKB/s]
40%|████ | 279k/692k [00:11<00:20, 19.7kKB/s]
41%|████ | 281k/692k [00:12<00:20, 20.5kKB/s]
41%|████ | 283k/692k [00:12<00:20, 20.0kKB/s]
41%|████▏ | 286k/692k [00:12<00:19, 20.5kKB/s]
42%|████▏ | 288k/692k [00:12<00:20, 20.1kKB/s]
42%|████▏ | 290k/692k [00:12<00:19, 20.9kKB/s]
42%|████▏ | 292k/692k [00:12<00:19, 20.8kKB/s]
43%|████▎ | 294k/692k [00:12<00:19, 20.6kKB/s]
43%|████▎ | 297k/692k [00:12<00:19, 20.3kKB/s]
43%|████▎ | 299k/692k [00:12<00:18, 20.8kKB/s]
43%|████▎ | 301k/692k [00:13<00:18, 20.6kKB/s]
44%|████▍ | 303k/692k [00:13<00:18, 21.0kKB/s]
44%|████▍ | 306k/692k [00:13<00:18, 20.7kKB/s]
45%|████▍ | 308k/692k [00:13<00:17, 21.7kKB/s]
45%|████▍ | 311k/692k [00:13<00:18, 20.7kKB/s]
45%|████▌ | 313k/692k [00:13<00:17, 22.3kKB/s]
46%|████▌ | 315k/692k [00:13<00:18, 20.6kKB/s]
46%|████▌ | 318k/692k [00:13<00:16, 22.2kKB/s]
46%|████▋ | 320k/692k [00:13<00:17, 20.9kKB/s]
47%|████▋ | 323k/692k [00:14<00:16, 22.6kKB/s]
47%|████▋ | 325k/692k [00:14<00:17, 21.4kKB/s]
47%|████▋ | 328k/692k [00:14<00:17, 21.1kKB/s]
48%|████▊ | 331k/692k [00:14<00:16, 22.4kKB/s]
48%|████▊ | 333k/692k [00:14<00:17, 20.9kKB/s]
48%|████▊ | 336k/692k [00:14<00:15, 22.5kKB/s]
49%|████▉ | 338k/692k [00:14<00:16, 21.3kKB/s]
49%|████▉ | 341k/692k [00:14<00:14, 23.5kKB/s]
50%|████▉ | 343k/692k [00:14<00:15, 22.1kKB/s]
50%|████▉ | 346k/692k [00:15<00:16, 21.4kKB/s]
50%|█████ | 348k/692k [00:15<00:15, 22.3kKB/s]
51%|█████ | 351k/692k [00:15<00:15, 21.7kKB/s]
51%|█████ | 353k/692k [00:15<00:15, 22.6kKB/s]
51%|█████▏ | 356k/692k [00:15<00:15, 21.8kKB/s]
52%|█████▏ | 358k/692k [00:15<00:14, 22.7kKB/s]
52%|█████▏ | 361k/692k [00:15<00:15, 21.8kKB/s]
52%|█████▏ | 363k/692k [00:15<00:14, 22.7kKB/s]
53%|█████▎ | 366k/692k [00:15<00:14, 21.9kKB/s]
53%|█████▎ | 368k/692k [00:16<00:14, 22.7kKB/s]
54%|█████▎ | 370k/692k [00:16<00:14, 22.0kKB/s]
54%|█████▍ | 373k/692k [00:16<00:13, 22.9kKB/s]
54%|█████▍ | 375k/692k [00:16<00:14, 22.0kKB/s]
55%|█████▍ | 378k/692k [00:16<00:13, 22.8kKB/s]
55%|█████▍ | 380k/692k [00:16<00:14, 21.9kKB/s]
55%|█████▌ | 383k/692k [00:16<00:13, 23.0kKB/s]
56%|█████▌ | 385k/692k [00:16<00:13, 22.0kKB/s]
56%|█████▌ | 388k/692k [00:16<00:13, 22.8kKB/s]
56%|█████▋ | 390k/692k [00:17<00:13, 22.1kKB/s]
57%|█████▋ | 393k/692k [00:17<00:13, 23.0kKB/s]
57%|█████▋ | 395k/692k [00:17<00:13, 22.1kKB/s]
57%|█████▋ | 398k/692k [00:17<00:12, 22.9kKB/s]
58%|█████▊ | 400k/692k [00:17<00:13, 22.1kKB/s]
58%|█████▊ | 403k/692k [00:17<00:12, 23.0kKB/s]
59%|█████▊ | 405k/692k [00:17<00:13, 22.1kKB/s]
59%|█████▉ | 408k/692k [00:17<00:12, 22.6kKB/s]
59%|█████▉ | 410k/692k [00:17<00:12, 22.3kKB/s]
60%|█████▉ | 412k/692k [00:18<00:12, 22.5kKB/s]
60%|█████▉ | 415k/692k [00:18<00:12, 22.4kKB/s]
60%|██████ | 417k/692k [00:18<00:12, 22.4kKB/s]
61%|██████ | 420k/692k [00:18<00:12, 22.5kKB/s]
61%|██████ | 422k/692k [00:18<00:12, 22.4kKB/s]
61%|██████▏ | 425k/692k [00:18<00:11, 22.4kKB/s]
62%|██████▏ | 427k/692k [00:18<00:11, 22.5kKB/s]
62%|██████▏ | 430k/692k [00:18<00:11, 22.3kKB/s]
62%|██████▏ | 432k/692k [00:18<00:12, 21.3kKB/s]
63%|██████▎ | 434k/692k [00:19<00:13, 19.3kKB/s]
63%|██████▎ | 436k/692k [00:19<00:14, 17.8kKB/s]
63%|██████▎ | 438k/692k [00:19<00:14, 18.0kKB/s]
64%|██████▎ | 440k/692k [00:19<00:14, 17.2kKB/s]
64%|██████▍ | 442k/692k [00:19<00:14, 17.6kKB/s]
64%|██████▍ | 444k/692k [00:19<00:14, 16.6kKB/s]
64%|██████▍ | 445k/692k [00:19<00:14, 16.5kKB/s]
65%|██████▍ | 447k/692k [00:19<00:14, 17.0kKB/s]
65%|██████▍ | 449k/692k [00:19<00:14, 16.7kKB/s]
65%|██████▌ | 451k/692k [00:20<00:13, 17.3kKB/s]
65%|██████▌ | 453k/692k [00:20<00:14, 16.7kKB/s]
66%|██████▌ | 455k/692k [00:20<00:13, 17.4kKB/s]
66%|██████▌ | 457k/692k [00:20<00:13, 17.0kKB/s]
66%|██████▋ | 459k/692k [00:20<00:13, 17.5kKB/s]
67%|██████▋ | 461k/692k [00:20<00:13, 17.2kKB/s]
67%|██████▋ | 463k/692k [00:20<00:12, 17.9kKB/s]
67%|██████▋ | 465k/692k [00:20<00:13, 17.4kKB/s]
67%|██████▋ | 467k/692k [00:20<00:12, 18.2kKB/s]
68%|██████▊ | 468k/692k [00:21<00:12, 18.2kKB/s]
68%|██████▊ | 470k/692k [00:21<00:12, 17.6kKB/s]
68%|██████▊ | 472k/692k [00:21<00:11, 18.4kKB/s]
68%|██████▊ | 474k/692k [00:21<00:12, 17.2kKB/s]
69%|██████▉ | 476k/692k [00:21<00:11, 18.6kKB/s]
69%|██████▉ | 478k/692k [00:21<00:12, 17.5kKB/s]
69%|██████▉ | 481k/692k [00:21<00:11, 18.4kKB/s]
70%|██████▉ | 482k/692k [00:21<00:11, 17.7kKB/s]
70%|██████▉ | 485k/692k [00:21<00:11, 18.8kKB/s]
70%|███████ | 486k/692k [00:22<00:11, 17.8kKB/s]
71%|███████ | 489k/692k [00:22<00:11, 17.6kKB/s]
71%|███████ | 491k/692k [00:22<00:10, 19.8kKB/s]
71%|███████▏ | 493k/692k [00:22<00:10, 18.2kKB/s]
72%|███████▏ | 496k/692k [00:22<00:11, 17.8kKB/s]
72%|███████▏ | 498k/692k [00:22<00:09, 20.0kKB/s]
72%|███████▏ | 500k/692k [00:22<00:10, 18.4kKB/s]
73%|███████▎ | 502k/692k [00:22<00:10, 18.0kKB/s]
73%|███████▎ | 505k/692k [00:23<00:09, 19.7kKB/s]
73%|███████▎ | 507k/692k [00:23<00:10, 18.5kKB/s]
74%|███████▎ | 509k/692k [00:23<00:10, 18.2kKB/s]
74%|███████▍ | 512k/692k [00:23<00:09, 19.7kKB/s]
74%|███████▍ | 514k/692k [00:23<00:09, 18.8kKB/s]
75%|███████▍ | 516k/692k [00:23<00:09, 19.5kKB/s]
75%|███████▍ | 518k/692k [00:23<00:09, 18.7kKB/s]
75%|███████▌ | 521k/692k [00:23<00:08, 19.6kKB/s]
75%|███████▌ | 522k/692k [00:23<00:09, 18.6kKB/s]
76%|███████▌ | 525k/692k [00:24<00:08, 19.6kKB/s]
76%|███████▌ | 527k/692k [00:24<00:08, 18.8kKB/s]
76%|███████▋ | 529k/692k [00:24<00:08, 18.3kKB/s]
77%|███████▋ | 532k/692k [00:24<00:07, 20.6kKB/s]
77%|███████▋ | 534k/692k [00:24<00:08, 18.7kKB/s]
77%|███████▋ | 536k/692k [00:24<00:08, 18.3kKB/s]
78%|███████▊ | 539k/692k [00:24<00:07, 19.8kKB/s]
78%|███████▊ | 541k/692k [00:24<00:08, 18.9kKB/s]
78%|███████▊ | 543k/692k [00:25<00:08, 18.6kKB/s]
79%|███████▉ | 546k/692k [00:25<00:07, 20.1kKB/s]
79%|███████▉ | 548k/692k [00:25<00:07, 19.1kKB/s]
79%|███████▉ | 550k/692k [00:25<00:07, 20.1kKB/s]
80%|███████▉ | 552k/692k [00:25<00:07, 19.1kKB/s]
80%|████████ | 554k/692k [00:25<00:07, 18.5kKB/s]
80%|████████ | 557k/692k [00:25<00:06, 20.5kKB/s]
81%|████████ | 559k/692k [00:25<00:07, 18.6kKB/s]
81%|████████ | 561k/692k [00:25<00:06, 19.6kKB/s]
81%|████████▏ | 563k/692k [00:26<00:06, 18.8kKB/s]
82%|████████▏ | 566k/692k [00:26<00:06, 18.5kKB/s]
82%|████████▏ | 568k/692k [00:26<00:05, 20.8kKB/s]
82%|████████▏ | 570k/692k [00:26<00:06, 19.0kKB/s]
83%|████████▎ | 573k/692k [00:26<00:06, 19.7kKB/s]
83%|████████▎ | 575k/692k [00:26<00:06, 18.9kKB/s]
83%|████████▎ | 577k/692k [00:26<00:06, 18.5kKB/s]
84%|████████▎ | 580k/692k [00:26<00:05, 20.0kKB/s]
84%|████████▍ | 582k/692k [00:27<00:05, 18.9kKB/s]
84%|████████▍ | 584k/692k [00:27<00:05, 20.1kKB/s]
85%|████████▍ | 586k/692k [00:27<00:05, 19.0kKB/s]
85%|████████▍ | 588k/692k [00:27<00:05, 18.6kKB/s]
85%|████████▌ | 591k/692k [00:27<00:05, 19.9kKB/s]
86%|████████▌ | 593k/692k [00:27<00:05, 18.9kKB/s]
86%|████████▌ | 595k/692k [00:27<00:04, 20.2kKB/s]
86%|████████▋ | 597k/692k [00:27<00:04, 19.1kKB/s]
87%|████████▋ | 600k/692k [00:27<00:05, 18.5kKB/s]
87%|████████▋ | 602k/692k [00:28<00:04, 19.9kKB/s]
87%|████████▋ | 604k/692k [00:28<00:04, 18.9kKB/s]
88%|████████▊ | 607k/692k [00:28<00:04, 20.2kKB/s]
88%|████████▊ | 609k/692k [00:28<00:04, 19.2kKB/s]
88%|████████▊ | 611k/692k [00:28<00:04, 18.5kKB/s]
89%|████████▊ | 614k/692k [00:28<00:03, 19.9kKB/s]
89%|████████▉ | 616k/692k [00:28<00:04, 18.9kKB/s]
89%|████████▉ | 618k/692k [00:28<00:03, 20.2kKB/s]
90%|████████▉ | 620k/692k [00:29<00:03, 19.1kKB/s]
90%|████████▉ | 622k/692k [00:29<00:03, 19.5kKB/s]
90%|█████████ | 624k/692k [00:29<00:03, 18.7kKB/s]
90%|█████████ | 626k/692k [00:29<00:03, 19.8kKB/s]
91%|█████████ | 628k/692k [00:29<00:03, 18.7kKB/s]
91%|█████████ | 631k/692k [00:29<00:03, 20.0kKB/s]
91%|█████████▏| 633k/692k [00:29<00:03, 19.0kKB/s]
92%|█████████▏| 635k/692k [00:29<00:02, 19.8kKB/s]
92%|█████████▏| 637k/692k [00:29<00:02, 18.7kKB/s]
92%|█████████▏| 639k/692k [00:30<00:02, 18.6kKB/s]
93%|█████████▎| 642k/692k [00:30<00:02, 20.1kKB/s]
93%|█████████▎| 644k/692k [00:30<00:02, 18.5kKB/s]
93%|█████████▎| 646k/692k [00:30<00:02, 18.8kKB/s]
94%|█████████▎| 648k/692k [00:30<00:02, 18.6kKB/s]
94%|█████████▍| 651k/692k [00:30<00:02, 19.1kKB/s]
94%|█████████▍| 653k/692k [00:30<00:02, 18.8kKB/s]
95%|█████████▍| 655k/692k [00:30<00:01, 19.4kKB/s]
95%|█████████▍| 657k/692k [00:30<00:01, 19.2kKB/s]
95%|█████████▌| 660k/692k [00:31<00:01, 19.4kKB/s]
96%|█████████▌| 662k/692k [00:31<00:01, 19.8kKB/s]
96%|█████████▌| 664k/692k [00:31<00:01, 19.5kKB/s]
96%|█████████▌| 666k/692k [00:31<00:01, 20.6kKB/s]
97%|█████████▋| 668k/692k [00:31<00:01, 19.6kKB/s]
97%|█████████▋| 671k/692k [00:31<00:01, 20.7kKB/s]
97%|█████████▋| 673k/692k [00:31<00:00, 19.8kKB/s]
98%|█████████▊| 675k/692k [00:31<00:00, 20.8kKB/s]
98%|█████████▊| 677k/692k [00:31<00:00, 19.9kKB/s]
98%|█████████▊| 680k/692k [00:32<00:00, 21.1kKB/s]
98%|█████████▊| 682k/692k [00:32<00:00, 20.1kKB/s]
99%|█████████▉| 684k/692k [00:32<00:00, 21.5kKB/s]
99%|█████████▉| 687k/692k [00:32<00:00, 19.6kKB/s]
100%|█████████▉| 689k/692k [00:32<00:00, 20.4kKB/s]
100%|█████████▉| 692k/692k [00:32<00:00, 22.5kKB/s]
100%|██████████| 692k/692k [00:32<00:00, 21.2kKB/s]
0%| | 0.00/97.5k [00:00<?, ?KB/s]
0%| | 30.0/97.5k [00:00<07:56, 205KB/s]
0%| | 77.0/97.5k [00:00<05:56, 274KB/s]
0%| | 156/97.5k [00:00<04:35, 353KB/s]
0%| | 263/97.5k [00:00<03:19, 488KB/s]
0%| | 400/97.5k [00:00<02:31, 643KB/s]
1%| | 623/97.5k [00:00<01:43, 934KB/s]
1%| | 944/97.5k [00:01<01:12, 1.34kKB/s]
1%|▏ | 1.38k/97.5k [00:01<00:51, 1.86kKB/s]
2%|▏ | 2.00k/97.5k [00:01<00:34, 2.76kKB/s]
2%|▏ | 2.44k/97.5k [00:01<00:30, 3.11kKB/s]
4%|▎ | 3.63k/97.5k [00:01<00:18, 5.14kKB/s]
5%|▍ | 4.62k/97.5k [00:01<00:14, 6.33kKB/s]
7%|▋ | 7.03k/97.5k [00:01<00:08, 10.4kKB/s]
9%|▊ | 8.33k/97.5k [00:01<00:08, 11.0kKB/s]
11%|█▏ | 11.1k/97.5k [00:02<00:05, 14.7kKB/s]
13%|█▎ | 12.6k/97.5k [00:02<00:05, 14.3kKB/s]
16%|█▌ | 15.8k/97.5k [00:02<00:04, 18.9kKB/s]
18%|█▊ | 17.7k/97.5k [00:02<00:04, 17.2kKB/s]
22%|██▏ | 21.2k/97.5k [00:02<00:03, 20.2kKB/s]
24%|██▍ | 23.4k/97.5k [00:02<00:03, 20.6kKB/s]
28%|██▊ | 27.4k/97.5k [00:02<00:02, 24.4kKB/s]
31%|███ | 29.9k/97.5k [00:02<00:02, 24.0kKB/s]
35%|███▍ | 34.1k/97.5k [00:02<00:02, 28.9kKB/s]
38%|███▊ | 37.3k/97.5k [00:03<00:02, 29.7kKB/s]
41%|████▏ | 40.3k/97.5k [00:03<00:01, 29.3kKB/s]
46%|████▋ | 45.3k/97.5k [00:03<00:01, 35.3kKB/s]
50%|█████ | 48.9k/97.5k [00:03<00:01, 32.7kKB/s]
56%|█████▌ | 54.2k/97.5k [00:03<00:01, 34.0kKB/s]
61%|██████ | 59.5k/97.5k [00:03<00:01, 34.8kKB/s]
65%|██████▍ | 63.0k/97.5k [00:03<00:01, 33.5kKB/s]
68%|██████▊ | 66.4k/97.5k [00:03<00:01, 27.7kKB/s]
71%|███████ | 69.3k/97.5k [00:04<00:01, 27.5kKB/s]
76%|███████▌ | 73.6k/97.5k [00:04<00:00, 30.9kKB/s]
79%|███████▉ | 76.9k/97.5k [00:04<00:00, 25.9kKB/s]
82%|████████▏ | 79.6k/97.5k [00:04<00:00, 25.6kKB/s]
84%|████████▍ | 82.4k/97.5k [00:04<00:00, 25.2kKB/s]
87%|████████▋ | 85.0k/97.5k [00:04<00:00, 24.9kKB/s]
90%|████████▉ | 87.5k/97.5k [00:04<00:00, 23.9kKB/s]
93%|█████████▎| 91.0k/97.5k [00:04<00:00, 25.6kKB/s]
98%|█████████▊| 95.4k/97.5k [00:05<00:00, 30.0kKB/s]
100%|██████████| 97.5k/97.5k [00:05<00:00, 19.1kKB/s]
------------------------------ Captured log setup ------------------------------
INFO recommenders.datasets.download_utils:download_utils.py:38 Downloading http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Movies_and_TV_5.json.gz
INFO recommenders.datasets.download_utils:download_utils.py:38 Downloading http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/meta_Movies_and_TV.json.gz
INFO root:amazon_reviews.py:399 start reviews preprocessing...
INFO root:amazon_reviews.py:386 start meta preprocessing...
INFO root:amazon_reviews.py:419 start create instances...
INFO root:amazon_reviews.py:356 creating item2cate dict
INFO root:amazon_reviews.py:367 getting sampled data...
INFO root:amazon_reviews.py:460 start data processing...
INFO root:amazon_reviews.py:202 data generating...
INFO root:amazon_reviews.py:79 vocab generating...
INFO root:amazon_reviews.py:148 start valid negative sampling
INFO root:amazon_reviews.py:170 start test negative sampling
----------------------------- Captured stdout call -----------------------------
WARNING:tensorflow:From /mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/models/sequential/sli_rec.py:61: dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `keras.layers.RNN(cell)`, which is equivalent to this API
------------------------------ Captured log call -------------------------------
WARNING tensorflow:deprecation.py:50 From /mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/models/sequential/sli_rec.py:61: dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `keras.layers.RNN(cell)`, which is equivalent to this API
________________________ test_sum_component_definition _________________________
sequential_files = ('/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/tests/resources/deeprec/slirec', '/mnt/azureml/cr/j/e49a1d...ab.pkl', '/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/tests/resources/deeprec/slirec/category_vocab.pkl')
deeprec_config_path = PosixPath('/mnt/azureml/cr/j/e49a1dc1154c4ee3b42372de2b064c9c/exe/wd/recommenders/models/deeprec/config')
@pytest.mark.gpu
def test_sum_component_definition(sequential_files, deeprec_config_path):
yaml_file_sum = os.path.join(deeprec_config_path, "sum.yaml")
data_path, user_vocab, item_vocab, cate_vocab = sequential_files
# SUM model
hparams_sum = prepare_hparams(
yaml_file_sum,
train_num_ngs=4,
embed_l2=0.0,
layer_l2=0.0,
learning_rate=0.001,
epochs=1,
MODEL_DIR=os.path.join(data_path, "model"),
SUMMARIES_DIR=os.path.join(data_path, "summary"),
user_vocab=user_vocab,
item_vocab=item_vocab,
cate_vocab=cate_vocab,
need_sample=True,
)
> model_sum = SUMModel(hparams_sum, SequentialIterator)
E NameError: name 'SUMModel' is not defined
tests/unit/recommenders/models/test_deeprec_model.py:324: NameError
could it be because of this? WARNING:tensorflow:From /home/u/anaconda/envs/reco_gpu/lib/python3.8/site-packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term
I created this issue https://github.com/recommenders-team/recommenders/issues/2018
I´m going to skip the affected test
Do we also get the error in TF 2.8.4? (which has the patch)
Do we also get the error in TF 2.8.4? (which has the patch)
It works, but pinning to this TF version won´t solve the problem because the future ones will break.
The nightly builds pass as well with the latest changes https://github.com/recommenders-team/recommenders/actions/runs/6506276074
nightly passes: https://github.com/recommenders-team/recommenders/actions/runs/6507898617
merging
Description
There was a security alert with TF: https://github.com/advisories/GHSA-xxcj-rhqg-m46g
Related Issues
References
Checklist:
staging branch
and not tomain branch
.