Various tools give semantic meaning to comments embedded inside of expressions. For example, Webpack and Vite have special "magic comments" that can be used to affect code splitting behavior:
import(/* webpackChunkName: "foo" */ '../foo');
import(/* @vite-ignore */ dynamicVar);
new Worker(/* webpackChunkName: "bar" */ new URL("../bar.ts", import.meta.url));
new Worker(new URL('./path', import.meta.url), /* @vite-ignore */ dynamicOptions);
Since esbuild can be used as a preprocessor for these tools (e.g. to strip TypeScript types), it can be problematic if esbuild doesn't do additional work to try to retain these comments. Previously esbuild special-cased Webpack comments in these specific locations in the AST. But Vite would now like to use similar comments, and likely other tools as well.
So with this release, esbuild now will attempt to preserve some comments inside of expressions in more situations than before. This behavior is mainly intended to preserve these special "magic comments" that are meant for other tools to consume, although esbuild will no longer only preserve Webpack-specific comments so it should now be tool-agnostic. There is no guarantee that all such comments will be preserved (especially when --minify-syntax is enabled). So this change does not mean that esbuild is now usable as a code formatter. In particular comment preservation is more likely to happen with leading comments than with trailing comments. You should put comments that you want to be preserved before the relevant expression instead of after it. Also note that this change does not retain any more statement-level comments than before (i.e. comments not embedded inside of expressions). Comment preservation is not enabled when --minify-whitespace is enabled (which is automatically enabled when you use --minify).
v0.16.13
Publish a new bundle visualization tool
While esbuild provides bundle metadata via the --metafile flag, previously esbuild left analysis of it completely up to third-party tools (well, outside of the rudimentary --analyze flag). However, the esbuild website now has a built-in bundle visualization tool:
You can pass --metafile to esbuild to output bundle metadata, then upload that JSON file to this tool to visualize your bundle. This is helpful for answering questions such as:
Which packages are included in my bundle?
How did a specific file get included?
How small did a specific file compress to?
Was a specific file tree-shaken or not?
I'm publishing this tool because I think esbuild should provide some answer to "how do I visualize my bundle" without requiring people to reach for third-party tools. At the moment the tool offers two types of visualizations: a radial "sunburst chart" and a linear "flame chart". They serve slightly different but overlapping use cases (e.g. the sunburst chart is more keyboard-accessible while the flame chart is easier with the mouse). This tool may continue to evolve over time.
Fix --metafile and --mangle-cache with --watch (#1357)
The CLI calls the Go API and then also writes out the metafile and/or mangle cache JSON files if those features are enabled. This extra step is necessary because these files are returned by the Go API as in-memory strings. However, this extra step accidentally didn't happen for all builds after the initial build when watch mode was enabled. This behavior used to work but it was broken in version 0.14.18 by the introduction of the mangle cache feature. This release fixes the combination of these features, so the metafile and mangle cache features should now work with watch mode. This behavior was only broken for the CLI, not for the JS or Go APIs.
Add an original field to the metafile
The metadata file JSON now has an additional field: each import in an input file now contains the pre-resolved path in the original field in addition to the post-resolved path in the path field. This means it's now possible to run certain additional analysis over your bundle. For example, you should be able to use this to detect when the same package subpath is represented multiple times in the bundle, either because multiple versions of a package were bundled or because a package is experiencing the dual-package hazard.
v0.16.12
Loader defaults to js for extensionless files (#2776)
Certain packages contain files without an extension. For example, the yargs package contains the file yargs/yargs which has no extension. Node, Webpack, and Parcel can all understand code that imports yargs/yargs because they assume that the file is JavaScript. However, esbuild was previously unable to understand this code because it relies on the file extension to tell it how to interpret the file. With this release, esbuild will now assume files without an extension are JavaScript files. This can be customized by setting the loader for "" (the empty string, representing files without an extension) to another loader. For example, if you want files without an extension to be treated as CSS instead, you can do that like this:
Various tools give semantic meaning to comments embedded inside of expressions. For example, Webpack and Vite have special "magic comments" that can be used to affect code splitting behavior:
import(/* webpackChunkName: "foo" */ '../foo');
import(/* @vite-ignore */ dynamicVar);
new Worker(/* webpackChunkName: "bar" */ new URL("../bar.ts", import.meta.url));
new Worker(new URL('./path', import.meta.url), /* @vite-ignore */ dynamicOptions);
Since esbuild can be used as a preprocessor for these tools (e.g. to strip TypeScript types), it can be problematic if esbuild doesn't do additional work to try to retain these comments. Previously esbuild special-cased Webpack comments in these specific locations in the AST. But Vite would now like to use similar comments, and likely other tools as well.
So with this release, esbuild now will attempt to preserve some comments inside of expressions in more situations than before. This behavior is mainly intended to preserve these special "magic comments" that are meant for other tools to consume, although esbuild will no longer only preserve Webpack-specific comments so it should now be tool-agnostic. There is no guarantee that all such comments will be preserved (especially when --minify-syntax is enabled). So this change does not mean that esbuild is now usable as a code formatter. In particular comment preservation is more likely to happen with leading comments than with trailing comments. You should put comments that you want to be preserved before the relevant expression instead of after it. Also note that this change does not retain any more statement-level comments than before (i.e. comments not embedded inside of expressions). Comment preservation is not enabled when --minify-whitespace is enabled (which is automatically enabled when you use --minify).
0.16.13
Publish a new bundle visualization tool
While esbuild provides bundle metadata via the --metafile flag, previously esbuild left analysis of it completely up to third-party tools (well, outside of the rudimentary --analyze flag). However, the esbuild website now has a built-in bundle visualization tool:
You can pass --metafile to esbuild to output bundle metadata, then upload that JSON file to this tool to visualize your bundle. This is helpful for answering questions such as:
Which packages are included in my bundle?
How did a specific file get included?
How small did a specific file compress to?
Was a specific file tree-shaken or not?
I'm publishing this tool because I think esbuild should provide some answer to "how do I visualize my bundle" without requiring people to reach for third-party tools. At the moment the tool offers two types of visualizations: a radial "sunburst chart" and a linear "flame chart". They serve slightly different but overlapping use cases (e.g. the sunburst chart is more keyboard-accessible while the flame chart is easier with the mouse). This tool may continue to evolve over time.
Fix --metafile and --mangle-cache with --watch (#1357)
The CLI calls the Go API and then also writes out the metafile and/or mangle cache JSON files if those features are enabled. This extra step is necessary because these files are returned by the Go API as in-memory strings. However, this extra step accidentally didn't happen for all builds after the initial build when watch mode was enabled. This behavior used to work but it was broken in version 0.14.18 by the introduction of the mangle cache feature. This release fixes the combination of these features, so the metafile and mangle cache features should now work with watch mode. This behavior was only broken for the CLI, not for the JS or Go APIs.
Add an original field to the metafile
The metadata file JSON now has an additional field: each import in an input file now contains the pre-resolved path in the original field in addition to the post-resolved path in the path field. This means it's now possible to run certain additional analysis over your bundle. For example, you should be able to use this to detect when the same package subpath is represented multiple times in the bundle, either because multiple versions of a package were bundled or because a package is experiencing the dual-package hazard.
0.16.12
Loader defaults to js for extensionless files (#2776)
Certain packages contain files without an extension. For example, the yargs package contains the file yargs/yargs which has no extension. Node, Webpack, and Parcel can all understand code that imports yargs/yargs because they assume that the file is JavaScript. However, esbuild was previously unable to understand this code because it relies on the file extension to tell it how to interpret the file. With this release, esbuild will now assume files without an extension are JavaScript files. This can be customized by setting the loader for "" (the empty string, representing files without an extension) to another loader. For example, if you want files without an extension to be treated as CSS instead, you can do that like this:
Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Bumps esbuild from 0.15.11 to 0.16.14.
Release notes
Sourced from esbuild's releases.
... (truncated)
Changelog
Sourced from esbuild's changelog.
... (truncated)
Commits
93328af
publish 0.16.14 to npm98bd7c3
preserve comments in import assertions toof8311c4
fix #2721: make comment-preservation more generalc169006
changeLegalCommentsBeforeToken
into ranges56f4ef9
parser recovery for??
with||
and/or&&
85fd2b1
more error text for #2790930f60d
link to analyzer in help text0db0b46
publish 0.16.13 to npmeda632d
mention the bundle analyzer in the release notes9234378
add theoriginal
field to the metafileDependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting
@dependabot rebase
.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)