Open ConanWolf46 opened 5 months ago
still the same issues, i have tried installing a later version of really everything trying to match everything up, the GPU driver and matching the CUDA version with the DRIVER then the cuDDN or whatever its called to match with the CUDA as well then installed the proper pytorch to match that , which still failed with the same error, im tired of this....
I have the same error:
RuntimeError: cuFFT error: CUFFT_INTERNAL_ERROR
I'm on Debian.
(.venv) (base) humanity@0-Milky-Way:~/piper/src/python$ python3 -m piper_train --dataset-dir ~/piper/my-training --accelerator 'gpu' --devices 1 --batch-size 32 --validation-split 0.0 --num-test-examples 0 --max_epochs 6000 --resume_from_checkpoint ~/piper/epoch\=2665-step\=1182078.ckpt --checkpoint-epochs 1 --precision 32 --quality high
DEBUG:piper_train:Namespace(dataset_dir='/home/humanity/piper/my-training', checkpoint_epochs=1, quality='high', resume_from_single_speaker_checkpoint=None, logger=True, enable_checkpointing=True, default_root_dir=None, gradient_clip_val=None, gradient_clip_algorithm=None, num_nodes=1, num_processes=None, devices='1', gpus=None, auto_select_gpus=False, tpu_cores=None, ipus=None, enable_progress_bar=True, overfit_batches=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=None, max_epochs=6000, min_epochs=None, max_steps=-1, min_steps=None, max_time=None, limit_train_batches=None, limit_val_batches=None, limit_test_batches=None, limit_predict_batches=None, val_check_interval=None, log_every_n_steps=50, accelerator='gpu', strategy=None, sync_batchnorm=False, precision=32, enable_model_summary=True, weights_save_path=None, num_sanity_val_steps=2, resume_from_checkpoint='/home/humanity/piper/epoch=2665-step=1182078.ckpt', profiler=None, benchmark=None, deterministic=None, reload_dataloaders_every_n_epochs=0, auto_lr_find=False, replace_sampler_ddp=True, detect_anomaly=False, auto_scale_batch_size=False, plugins=None, amp_backend='native', amp_level=None, move_metrics_to_cpu=False, multiple_trainloader_mode='max_size_cycle', batch_size=32, validation_split=0.0, num_test_examples=0, max_phoneme_ids=None, hidden_channels=192, inter_channels=192, filter_channels=768, n_layers=6, n_heads=2, seed=1234)
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: Setting `Trainer(resume_from_checkpoint=)` is deprecated in v1.5 and will be removed in v1.7. Please pass `Trainer.fit(ckpt_path=)` directly instead.
rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
DEBUG:piper_train:Checkpoints will be saved every 1 epoch(s)
DEBUG:vits.dataset:Loading dataset: /home/humanity/piper/my-training/dataset.jsonl
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:731: LightningDeprecationWarning: `trainer.resume_from_checkpoint` is deprecated in v1.5 and will be removed in v2.0. Specify the fit checkpoint path with `trainer.fit(ckpt_path=)` instead.
ckpt_path = ckpt_path or self.resume_from_checkpoint
Missing logger folder: /home/humanity/piper/my-training/lightning_logs
Restoring states from the checkpoint path at /home/humanity/piper/epoch=2665-step=1182078.ckpt
DEBUG:fsspec.local:open file: /home/humanity/piper/epoch=2665-step=1182078.ckpt
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:345: UserWarning: The dirpath has changed from '/ssd/piper/out-train/lightning_logs/version_1/checkpoints' to '/home/humanity/piper/my-training/lightning_logs/version_0/checkpoints', therefore `best_model_score`, `kth_best_model_path`, `kth_value`, `last_model_path` and `best_k_models` won't be reloaded. Only `best_model_path` will be reloaded.
warnings.warn(
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
DEBUG:fsspec.local:open file: /home/humanity/piper/my-training/lightning_logs/version_0/hparams.yaml
Restored all states from the checkpoint file at /home/humanity/piper/epoch=2665-step=1182078.ckpt
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/utilities/data.py:153: UserWarning: Total length of `DataLoader` across ranks is zero. Please make sure this was your intention.
rank_zero_warn(
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:236: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 24 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
rank_zero_warn(
/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (33) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
rank_zero_warn(
Traceback (most recent call last):
File "/home/humanity/pinokio/bin/miniconda/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/humanity/pinokio/bin/miniconda/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/humanity/piper/src/python/piper_train/__main__.py", line 147, in <module>
main()
File "/home/humanity/piper/src/python/piper_train/__main__.py", line 124, in main
trainer.fit(model)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 696, in fit
self._call_and_handle_interrupt(
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 650, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 735, in _fit_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1166, in _run
results = self._run_stage()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1252, in _run_stage
return self._run_train()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1283, in _run_train
self.fit_loop.run()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 200, in run
self.advance(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 271, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 200, in run
self.advance(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 203, in advance
batch_output = self.batch_loop.run(kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 200, in run
self.advance(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 87, in advance
outputs = self.optimizer_loop.run(optimizers, kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 200, in run
self.advance(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 201, in advance
result = self._run_optimization(kwargs, self._optimizers[self.optim_progress.optimizer_position])
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 248, in _run_optimization
self._optimizer_step(optimizer, opt_idx, kwargs.get("batch_idx", 0), closure)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 358, in _optimizer_step
self.trainer._call_lightning_module_hook(
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1550, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/core/module.py", line 1705, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/core/optimizer.py", line 168, in step
step_output = self._strategy.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 216, in optimizer_step
return self.precision_plugin.optimizer_step(model, optimizer, opt_idx, closure, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 153, in optimizer_step
return optimizer.step(closure=closure, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/torch/optim/lr_scheduler.py", line 68, in wrapper
return wrapped(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/torch/optim/optimizer.py", line 140, in wrapper
out = func(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/torch/optim/adamw.py", line 120, in step
loss = closure()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 138, in _wrap_closure
closure_result = closure()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 146, in __call__
self._result = self.closure(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 132, in closure
step_output = self._step_fn()
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 407, in _training_step
training_step_output = self.trainer._call_strategy_hook("training_step", *kwargs.values())
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1704, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 358, in training_step
return self.model.training_step(*args, **kwargs)
File "/home/humanity/piper/src/python/piper_train/vits/lightning.py", line 191, in training_step
return self.training_step_g(batch)
File "/home/humanity/piper/src/python/piper_train/vits/lightning.py", line 230, in training_step_g
y_hat_mel = mel_spectrogram_torch(
File "/home/humanity/piper/src/python/piper_train/vits/mel_processing.py", line 120, in mel_spectrogram_torch
torch.stft(
File "/home/humanity/piper/src/python/.venv/lib/python3.10/site-packages/torch/functional.py", line 632, in stft
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
RuntimeError: cuFFT error: CUFFT_INTERNAL_ERROR
still the same issues, i have tried installing a later version of really everything trying to match everything up, the GPU driver and matching the CUDA version with the DRIVER then the cuDDN or whatever its called to match with the CUDA as well then installed the proper pytorch to match that , which still failed with the same error, im tired of this....
Hey, i found someone with the solution:
https://github.com/rhasspy/piper/issues/295#issuecomment-1839713379
im trying to train with a 4060Ti but i am having issues, any suggestions?