When use AES/ECB/PCKS7Padding to encrypt text, the result is defferent form aes-js and java.
Here is the js code using aes-js:
`// Convert text to bytes
var text = 'this is a string will be AES_Encrypt';
var textBytes = aesjs.utils.utf8.toBytes(text);
var padded = aesjs.padding.pkcs7.pad(textBytes);
// An example 128-bit key
var key = "UITN25LMUQC436IM";
var keyBytes = aesjs.utils.utf8.toBytes(key);
var aesEcb = new aesjs.ModeOfOperation.ecb(keyBytes);
var encryptedBytes = aesEcb.encrypt(padded);
// To print or store the binary data, you may convert it to hex
var encryptedHex = aesjs.utils.hex.fromBytes(encryptedBytes);
console.log(encryptedHex);
// When ready to decrypt the hex string, convert it back to bytes
var encryptedBytes = aesjs.utils.hex.toBytes(encryptedHex);
var encryptedText = aesjs.utils.utf8.fromBytes(encryptedBytes);
var base = new Base64();
var encryptedBase64 = base.encode(encryptedText);
//should be: fhTD0NNIzv4jUEhJuC1htFFXJ/4S/rL6tDCJPiNvJ8mVLHWOD0HWweuxHynxoZf9
// Since electronic codebook does not store state, we can
// reuse the same instance.
//var aesEcb = new aesjs.ModeOfOperation.ecb(key);
var decryptedBytes = aesEcb.decrypt(encryptedBytes);
// Convert our bytes back into text
var decryptedText = aesjs.utils.utf8.fromBytes(decryptedBytes);
console.log(decryptedText);
// "this is a string will be AES_Encrypt"
function Base64() {
// private property
_keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
// public method for encoding
this.encode = function (input) {
var output = "";
var chr1, chr2, chr3, enc1, enc2, enc3, enc4;
var i = 0;
input = _utf8_encode(input);
while (i < input.length) {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (isNaN(chr2)) {
enc3 = enc4 = 64;
} else if (isNaN(chr3)) {
enc4 = 64;
}
output = output +
_keyStr.charAt(enc1) + _keyStr.charAt(enc2) +
_keyStr.charAt(enc3) + _keyStr.charAt(enc4);
}
return output;
}
// public method for decoding
this.decode = function (input) {
var output = "";
var chr1, chr2, chr3;
var enc1, enc2, enc3, enc4;
var i = 0;
input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");
while (i < input.length) {
enc1 = _keyStr.indexOf(input.charAt(i++));
enc2 = _keyStr.indexOf(input.charAt(i++));
enc3 = _keyStr.indexOf(input.charAt(i++));
enc4 = _keyStr.indexOf(input.charAt(i++));
chr1 = (enc1 << 2) | (enc2 >> 4);
chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);
chr3 = ((enc3 & 3) << 6) | enc4;
output = output + String.fromCharCode(chr1);
if (enc3 != 64) {
output = output + String.fromCharCode(chr2);
}
if (enc4 != 64) {
output = output + String.fromCharCode(chr3);
}
}
output = _utf8_decode(output);
return output;
}
// private method for UTF-8 encoding
_utf8_encode = function (string) {
string = string.replace(/\r\n/g,"\n");
var utftext = "";
for (var n = 0; n < string.length; n++) {
var c = string.charCodeAt(n);
if (c < 128) {
utftext += String.fromCharCode(c);
} else if((c > 127) && (c < 2048)) {
utftext += String.fromCharCode((c >> 6) | 192);
utftext += String.fromCharCode((c & 63) | 128);
} else {
utftext += String.fromCharCode((c >> 12) | 224);
utftext += String.fromCharCode(((c >> 6) & 63) | 128);
utftext += String.fromCharCode((c & 63) | 128);
}
}
return utftext;
}
// private method for UTF-8 decoding
_utf8_decode = function (utftext) {
var string = "";
var i = 0;
var c = c1 = c2 = 0;
while ( i < utftext.length ) {
c = utftext.charCodeAt(i);
if (c < 128) {
string += String.fromCharCode(c);
i++;
} else if((c > 191) && (c < 224)) {
c2 = utftext.charCodeAt(i+1);
string += String.fromCharCode(((c & 31) << 6) | (c2 & 63));
i += 2;
} else {
c2 = utftext.charCodeAt(i+1);
c3 = utftext.charCodeAt(i+2);
string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));
i += 3;
}
}
return string;
}
}`
Here is the java code:
`import java.security.Key;
import java.security.Security;
When use AES/ECB/PCKS7Padding to encrypt text, the result is defferent form aes-js and java.
Here is the js code using aes-js: `// Convert text to bytes var text = 'this is a string will be AES_Encrypt'; var textBytes = aesjs.utils.utf8.toBytes(text); var padded = aesjs.padding.pkcs7.pad(textBytes);
// An example 128-bit key var key = "UITN25LMUQC436IM"; var keyBytes = aesjs.utils.utf8.toBytes(key); var aesEcb = new aesjs.ModeOfOperation.ecb(keyBytes); var encryptedBytes = aesEcb.encrypt(padded);
// To print or store the binary data, you may convert it to hex var encryptedHex = aesjs.utils.hex.fromBytes(encryptedBytes); console.log(encryptedHex);
// When ready to decrypt the hex string, convert it back to bytes var encryptedBytes = aesjs.utils.hex.toBytes(encryptedHex); var encryptedText = aesjs.utils.utf8.fromBytes(encryptedBytes);
var base = new Base64();
var encryptedBase64 = base.encode(encryptedText); //should be: fhTD0NNIzv4jUEhJuC1htFFXJ/4S/rL6tDCJPiNvJ8mVLHWOD0HWweuxHynxoZf9
// Since electronic codebook does not store state, we can // reuse the same instance. //var aesEcb = new aesjs.ModeOfOperation.ecb(key); var decryptedBytes = aesEcb.decrypt(encryptedBytes);
// Convert our bytes back into text var decryptedText = aesjs.utils.utf8.fromBytes(decryptedBytes); console.log(decryptedText); // "this is a string will be AES_Encrypt"
function Base64() {
}`
Here is the java code: `import java.security.Key; import java.security.Security;
import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.apache.commons.codec.binary.Base64;
public class TestAes {
}`