Closed vd1 closed 7 years ago
Yes, the API and documentation have strayed.
I think that these are issues stemming from the faulty 0.0.6 release. Since I cannot replicate them on the pending 0.0.7 version would it be ok if I make sure that they are addressed with that release?
sure, thanks.
@vd1 I've released 0.0.7 and updated the online documentation (http://www.hammerlab.org/oml/). In utop you should see
# #show_module Oml.Statistics.Descriptive ;;
module
Descriptive :
sig
val mean : float array -> float
val median : float array -> float
val var : ?population_mean:float -> ?biased:bool -> float array -> float
val sd : ?population_mean:float -> ?biased:bool -> float array -> float
val ad :
?population:float -> ?center:[ `Mean | `Median ] -> float array -> float
val covariance :
?population_means:float * float ->
?biased:bool -> float array -> float array -> float
val correlation : float array -> float array -> float
val autocorrelation : int -> float array -> float
val moment : int -> float array -> float
val skew : ?biased:bool -> float array -> float
val kurtosis : ?biased:bool -> float array -> float
val var_standard_error : float array -> float
val skew_standard_error : float array -> float
val kurtosis_standard_error : float array -> float
val var_statistic : float array -> float
val skew_statistic : float array -> float
val kurtosis_statistic : float array -> float
type skew_classification =
[ `Negative
| `Normal
| `Positive
| `Slightly_negative
| `Slightly_positive ]
val classify_skew : float array -> skew_classification
type kurtosis_classification =
[ `Fat | `Normal | `Skinny | `Slightly_fat | `Slightly_skinny ]
val classify_kurtosis : float array -> kurtosis_classification
type summary = {
size : int;
min : float;
max : float;
mean : float;
std : float;
var : float;
skew : float * skew_classification;
kurtosis : float * kurtosis_classification;
}
val summary : ?biased:bool -> float array -> summary
val histogram :
[ `Buckets of int | `Specific of float array | `Width of float ] ->
float array -> (float * int) array
val geometric_mean : float array -> float
val harmonic_mean : float array -> float
val spearman : float array -> float array -> float
val cosine : float array -> float array -> float
end
I hope that you find it useful.
awesome thanks!
Is the API documentation wrong?
This seems to work fine:
but this not:
actually there are plenty of examples which do not work