[X] I have searched the Supervision issues and found no similar feature requests.
Question
So Robovision provides a framework with Autodistill to transfer knowledge from larger foundational models into smaller models on custom data that runs faster. https://roboflow.com/train/yolo-world-and-yolov8. I'm just curious on the differences between this framework, and that of Reparameterization of Yolo-World with the same custom dataset to improve efficiency on custom datasets (https://github.com/AILab-CVC/YOLO-World/blob/master/docs/reparameterize.md). From the Yolo-World paper, it does seem that reparameterization, at least for coco dataset's vocabulary, does seem to perform slightly better with Yolov8-fine-tuned.
Just wondering are there any merits to both of the methods? Have anybody evaluated either of the approach and which would be the recommended approach? Thanks!
Search before asking
Question
So Robovision provides a framework with Autodistill to transfer knowledge from larger foundational models into smaller models on custom data that runs faster. https://roboflow.com/train/yolo-world-and-yolov8. I'm just curious on the differences between this framework, and that of Reparameterization of Yolo-World with the same custom dataset to improve efficiency on custom datasets (https://github.com/AILab-CVC/YOLO-World/blob/master/docs/reparameterize.md). From the Yolo-World paper, it does seem that reparameterization, at least for coco dataset's vocabulary, does seem to perform slightly better with Yolov8-fine-tuned.
Just wondering are there any merits to both of the methods? Have anybody evaluated either of the approach and which would be the recommended approach? Thanks!
Additional
No response