rohitgandikota / sliders

Concept Sliders for Precise Control of Diffusion Models
https://sliders.baulab.info
MIT License
947 stars 73 forks source link

Possible to make it work with ControlNet? #76

Closed ziniuwan closed 3 months ago

ziniuwan commented 7 months ago

Hi! Thank you for your amazing work!

I wonder if you could make the slider work with ControlNetPipeline/Img2ImgPipeline in Diffusers as well? It would be great to see slider lora to be controled by pose/canny/depth :)

rohitgandikota commented 7 months ago

Hey, that's an excellent question and would enable a lot of control for artists.

This should be possible right off the package. I mean, you should be able to load the controlnet module and the sliders at the same time. I haven't tested it personally, but will try to do it the coming weeks and release an update to the repo.

thanks for the question!

odunkel commented 5 months ago

Hey, I just saw the issue. It have it working by integrating the slider network in the StableDiffusionControlNetPipeline of diffusers, similar to how it was demonstrated, e.g., in demo_concept_sliders.ipynb. Hope, this helps.

All the best!

sauradip commented 5 months ago

Hey, I just saw the issue. It have it working by integrating the slider network in the StableDiffusionControlNetPipeline of diffusers, similar to how it was demonstrated, e.g., in demo_concept_sliders.ipynb. Hope, this helps.

All the best!

Can you make it public if it works ? Thanks in advance

odunkel commented 4 months ago

Hey, sorry for the late response. I'll try to add a complete example some time in the upcoming weeks.

So, for now, I just share the ControlNet call that includes the LoRA adapters (network). Let me know if this helps to reproduce it.

import torch from typing import List, Union, Optional, Dict, Any, Callable from diffusers.image_processor import PipelineImageInput from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.models import ControlNetModel from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel

from diffusers.utils.torch_utils import is_compiled_module, is_torch_version from diffusers.utils import deprecate from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps

@torch.no_grad() def call( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, guess_mode: bool = False, control_guidance_start: Union[float, List[float]] = 0.0, control_guidance_end: Union[float, List[float]] = 1.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], network = None, start_noise: int = 700, alpha_slider: float = 1., **kwargs, ): r""" The call function to the pipeline for generation.

Args:
    prompt (`str` or `List[str]`, *optional*):
        The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
    image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
            `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
        The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
        specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
        accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
        and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
        `init`, images must be passed as a list such that each element of the list can be correctly batched for
        input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet,
        each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets,
        where a list of image lists can be passed to batch for each prompt and each ControlNet.
    height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
        The height in pixels of the generated image.
    width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
        The width in pixels of the generated image.
    num_inference_steps (`int`, *optional*, defaults to 50):
        The number of denoising steps. More denoising steps usually lead to a higher quality image at the
        expense of slower inference.
    timesteps (`List[int]`, *optional*):
        Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
        in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
        passed will be used. Must be in descending order.
    guidance_scale (`float`, *optional*, defaults to 7.5):
        A higher guidance scale value encourages the model to generate images closely linked to the text
        `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
    negative_prompt (`str` or `List[str]`, *optional*):
        The prompt or prompts to guide what to not include in image generation. If not defined, you need to
        pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
    num_images_per_prompt (`int`, *optional*, defaults to 1):
        The number of images to generate per prompt.
    eta (`float`, *optional*, defaults to 0.0):
        Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
        to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
    generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
        A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
        generation deterministic.
    latents (`torch.FloatTensor`, *optional*):
        Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
        generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
        tensor is generated by sampling using the supplied random `generator`.
    prompt_embeds (`torch.FloatTensor`, *optional*):
        Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
        provided, text embeddings are generated from the `prompt` input argument.
    negative_prompt_embeds (`torch.FloatTensor`, *optional*):
        Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
        not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
    ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
    output_type (`str`, *optional*, defaults to `"pil"`):
        The output format of the generated image. Choose between `PIL.Image` or `np.array`.
    return_dict (`bool`, *optional*, defaults to `True`):
        Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
        plain tuple.
    callback (`Callable`, *optional*):
        A function that calls every `callback_steps` steps during inference. The function is called with the
        following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
    callback_steps (`int`, *optional*, defaults to 1):
        The frequency at which the `callback` function is called. If not specified, the callback is called at
        every step.
    cross_attention_kwargs (`dict`, *optional*):
        A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
        [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
    controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
        The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
        to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
        the corresponding scale as a list.
    guess_mode (`bool`, *optional*, defaults to `False`):
        The ControlNet encoder tries to recognize the content of the input image even if you remove all
        prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
    control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
        The percentage of total steps at which the ControlNet starts applying.
    control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
        The percentage of total steps at which the ControlNet stops applying.
    clip_skip (`int`, *optional*):
        Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
        the output of the pre-final layer will be used for computing the prompt embeddings.
    callback_on_step_end (`Callable`, *optional*):
        A function that calls at the end of each denoising steps during the inference. The function is called
        with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
        callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
        `callback_on_step_end_tensor_inputs`.
    callback_on_step_end_tensor_inputs (`List`, *optional*):
        The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
        will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
        `._callback_tensor_inputs` attribute of your pipeine class.

Examples:

Returns:
    [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
        If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
        otherwise a `tuple` is returned where the first element is a list with the generated images and the
        second element is a list of `bool`s indicating whether the corresponding generated image contains
        "not-safe-for-work" (nsfw) content.
"""

callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)

if callback is not None:
    deprecate(
        "callback",
        "1.0.0",
        "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
    )
if callback_steps is not None:
    deprecate(
        "callback_steps",
        "1.0.0",
        "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
    )

controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
    control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
    control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
    mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
    control_guidance_start, control_guidance_end = (
        mult * [control_guidance_start],
        mult * [control_guidance_end],
    )

# 1. Check inputs. Raise error if not correct
self.check_inputs(
    prompt,
    image,
    callback_steps,
    negative_prompt,
    prompt_embeds,
    negative_prompt_embeds,
    controlnet_conditioning_scale,
    control_guidance_start,
    control_guidance_end,
    callback_on_step_end_tensor_inputs,
)

self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs

# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
    batch_size = 1
elif prompt is not None and isinstance(prompt, list):
    batch_size = len(prompt)
else:
    batch_size = prompt_embeds.shape[0]

device = self._execution_device

if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
    controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

global_pool_conditions = (
    controlnet.config.global_pool_conditions
    if isinstance(controlnet, ControlNetModel)
    else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions

# 3. Encode input prompt
text_encoder_lora_scale = (
    self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
    prompt,
    device,
    num_images_per_prompt,
    self.do_classifier_free_guidance,
    negative_prompt,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_prompt_embeds,
    lora_scale=text_encoder_lora_scale,
    clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

if ip_adapter_image is not None:
    image_embeds = self.prepare_ip_adapter_image_embeds(
        ip_adapter_image, device, batch_size * num_images_per_prompt
    )

# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
    image = self.prepare_image(
        image=image,
        width=width,
        height=height,
        batch_size=batch_size * num_images_per_prompt,
        num_images_per_prompt=num_images_per_prompt,
        device=device,
        dtype=controlnet.dtype,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        guess_mode=guess_mode,
    )
    height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
    images = []

    # Nested lists as ControlNet condition
    if isinstance(image[0], list):
        # Transpose the nested image list
        image = [list(t) for t in zip(*image)]

    for image_ in image:
        image_ = self.prepare_image(
            image=image_,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )

        images.append(image_)

    image = images
    height, width = image[0].shape[-2:]
else:
    assert False

# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)

# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
    batch_size * num_images_per_prompt,
    num_channels_latents,
    height,
    width,
    prompt_embeds.dtype,
    device,
    generator,
    latents,
)

# 6.5 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
    guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
    timestep_cond = self.get_guidance_scale_embedding(
        guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
    ).to(device=device, dtype=latents.dtype)

# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

# 7.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

# 7.2 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
    keeps = [
        1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
        for s, e in zip(control_guidance_start, control_guidance_end)
    ]
    controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
is_unet_compiled = is_compiled_module(self.unet)
is_controlnet_compiled = is_compiled_module(self.controlnet)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
with self.progress_bar(total=num_inference_steps) as progress_bar:
    for i, t in enumerate(timesteps):
        if network is not None:
            if t>start_noise:
                network.set_lora_slider(scale=0)
            else:
                network.set_lora_slider(scale=alpha_slider)

        # Relevant thread:
        # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
        if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
            torch._inductor.cudagraph_mark_step_begin()
        # expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

        # controlnet(s) inference
        if guess_mode and self.do_classifier_free_guidance:
            # Infer ControlNet only for the conditional batch.
            control_model_input = latents
            control_model_input = self.scheduler.scale_model_input(control_model_input, t)
            controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
        else:
            control_model_input = latent_model_input
            controlnet_prompt_embeds = prompt_embeds

        if isinstance(controlnet_keep[i], list):
            cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
        else:
            controlnet_cond_scale = controlnet_conditioning_scale
            if isinstance(controlnet_cond_scale, list):
                controlnet_cond_scale = controlnet_cond_scale[0]
            cond_scale = controlnet_cond_scale * controlnet_keep[i]

        down_block_res_samples, mid_block_res_sample = self.controlnet(
            control_model_input,
            t,
            encoder_hidden_states=controlnet_prompt_embeds,
            controlnet_cond=image,
            conditioning_scale=cond_scale,
            guess_mode=guess_mode,
            return_dict=False,
        )

        if guess_mode and self.do_classifier_free_guidance:
            # Infered ControlNet only for the conditional batch.
            # To apply the output of ControlNet to both the unconditional and conditional batches,
            # add 0 to the unconditional batch to keep it unchanged.
            down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
            mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

        # predict the noise residual
        with network:
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                cross_attention_kwargs=self.cross_attention_kwargs,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

        # perform guidance
        if self.do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

        if callback_on_step_end is not None:
            callback_kwargs = {}
            for k in callback_on_step_end_tensor_inputs:
                callback_kwargs[k] = locals()[k]
            callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

            latents = callback_outputs.pop("latents", latents)
            prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
            negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

        # call the callback, if provided
        if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
            progress_bar.update()
            if callback is not None and i % callback_steps == 0:
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)

# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
    self.unet.to("cpu")
    self.controlnet.to("cpu")
    torch.cuda.empty_cache()

if not output_type == "latent":
    image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
        0
    ]
    image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
    image = latents
    has_nsfw_concept = None

if has_nsfw_concept is None:
    do_denormalize = [True] * image.shape[0]
else:
    do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

# Offload all models
self.maybe_free_model_hooks()

if not return_dict:
    return (image, has_nsfw_concept)

return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
rohitgandikota commented 3 months ago

Hey, sorry for the late response. I'll try to add a complete example some time in the upcoming weeks.

So, for now, I just share the ControlNet call that includes the LoRA adapters (network). Let me know if this helps to reproduce it.

import torch from typing import List, Union, Optional, Dict, Any, Callable from diffusers.image_processor import PipelineImageInput from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.models import ControlNetModel from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel

from diffusers.utils.torch_utils import is_compiled_module, is_torch_version from diffusers.utils import deprecate from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps

@torch.no_grad() def call( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, guess_mode: bool = False, control_guidance_start: Union[float, List[float]] = 0.0, control_guidance_end: Union[float, List[float]] = 1.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], network = None, start_noise: int = 700, alpha_slider: float = 1., **kwargs, ): r""" The call function to the pipeline for generation.

Args:
    prompt (`str` or `List[str]`, *optional*):
        The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
    image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
            `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
        The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
        specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
        accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
        and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
        `init`, images must be passed as a list such that each element of the list can be correctly batched for
        input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet,
        each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets,
        where a list of image lists can be passed to batch for each prompt and each ControlNet.
    height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
        The height in pixels of the generated image.
    width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
        The width in pixels of the generated image.
    num_inference_steps (`int`, *optional*, defaults to 50):
        The number of denoising steps. More denoising steps usually lead to a higher quality image at the
        expense of slower inference.
    timesteps (`List[int]`, *optional*):
        Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
        in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
        passed will be used. Must be in descending order.
    guidance_scale (`float`, *optional*, defaults to 7.5):
        A higher guidance scale value encourages the model to generate images closely linked to the text
        `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
    negative_prompt (`str` or `List[str]`, *optional*):
        The prompt or prompts to guide what to not include in image generation. If not defined, you need to
        pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
    num_images_per_prompt (`int`, *optional*, defaults to 1):
        The number of images to generate per prompt.
    eta (`float`, *optional*, defaults to 0.0):
        Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
        to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
    generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
        A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
        generation deterministic.
    latents (`torch.FloatTensor`, *optional*):
        Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
        generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
        tensor is generated by sampling using the supplied random `generator`.
    prompt_embeds (`torch.FloatTensor`, *optional*):
        Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
        provided, text embeddings are generated from the `prompt` input argument.
    negative_prompt_embeds (`torch.FloatTensor`, *optional*):
        Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
        not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
    ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
    output_type (`str`, *optional*, defaults to `"pil"`):
        The output format of the generated image. Choose between `PIL.Image` or `np.array`.
    return_dict (`bool`, *optional*, defaults to `True`):
        Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
        plain tuple.
    callback (`Callable`, *optional*):
        A function that calls every `callback_steps` steps during inference. The function is called with the
        following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
    callback_steps (`int`, *optional*, defaults to 1):
        The frequency at which the `callback` function is called. If not specified, the callback is called at
        every step.
    cross_attention_kwargs (`dict`, *optional*):
        A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
        [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
    controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
        The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
        to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
        the corresponding scale as a list.
    guess_mode (`bool`, *optional*, defaults to `False`):
        The ControlNet encoder tries to recognize the content of the input image even if you remove all
        prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
    control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
        The percentage of total steps at which the ControlNet starts applying.
    control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
        The percentage of total steps at which the ControlNet stops applying.
    clip_skip (`int`, *optional*):
        Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
        the output of the pre-final layer will be used for computing the prompt embeddings.
    callback_on_step_end (`Callable`, *optional*):
        A function that calls at the end of each denoising steps during the inference. The function is called
        with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
        callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
        `callback_on_step_end_tensor_inputs`.
    callback_on_step_end_tensor_inputs (`List`, *optional*):
        The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
        will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
        `._callback_tensor_inputs` attribute of your pipeine class.

Examples:

Returns:
    [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
        If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
        otherwise a `tuple` is returned where the first element is a list with the generated images and the
        second element is a list of `bool`s indicating whether the corresponding generated image contains
        "not-safe-for-work" (nsfw) content.
"""

callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)

if callback is not None:
    deprecate(
        "callback",
        "1.0.0",
        "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
    )
if callback_steps is not None:
    deprecate(
        "callback_steps",
        "1.0.0",
        "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
    )

controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
    control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
    control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
    mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
    control_guidance_start, control_guidance_end = (
        mult * [control_guidance_start],
        mult * [control_guidance_end],
    )

# 1. Check inputs. Raise error if not correct
self.check_inputs(
    prompt,
    image,
    callback_steps,
    negative_prompt,
    prompt_embeds,
    negative_prompt_embeds,
    controlnet_conditioning_scale,
    control_guidance_start,
    control_guidance_end,
    callback_on_step_end_tensor_inputs,
)

self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs

# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
    batch_size = 1
elif prompt is not None and isinstance(prompt, list):
    batch_size = len(prompt)
else:
    batch_size = prompt_embeds.shape[0]

device = self._execution_device

if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
    controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

global_pool_conditions = (
    controlnet.config.global_pool_conditions
    if isinstance(controlnet, ControlNetModel)
    else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions

# 3. Encode input prompt
text_encoder_lora_scale = (
    self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
    prompt,
    device,
    num_images_per_prompt,
    self.do_classifier_free_guidance,
    negative_prompt,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_prompt_embeds,
    lora_scale=text_encoder_lora_scale,
    clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

if ip_adapter_image is not None:
    image_embeds = self.prepare_ip_adapter_image_embeds(
        ip_adapter_image, device, batch_size * num_images_per_prompt
    )

# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
    image = self.prepare_image(
        image=image,
        width=width,
        height=height,
        batch_size=batch_size * num_images_per_prompt,
        num_images_per_prompt=num_images_per_prompt,
        device=device,
        dtype=controlnet.dtype,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        guess_mode=guess_mode,
    )
    height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
    images = []

    # Nested lists as ControlNet condition
    if isinstance(image[0], list):
        # Transpose the nested image list
        image = [list(t) for t in zip(*image)]

    for image_ in image:
        image_ = self.prepare_image(
            image=image_,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )

        images.append(image_)

    image = images
    height, width = image[0].shape[-2:]
else:
    assert False

# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)

# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
    batch_size * num_images_per_prompt,
    num_channels_latents,
    height,
    width,
    prompt_embeds.dtype,
    device,
    generator,
    latents,
)

# 6.5 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
    guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
    timestep_cond = self.get_guidance_scale_embedding(
        guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
    ).to(device=device, dtype=latents.dtype)

# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

# 7.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

# 7.2 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
    keeps = [
        1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
        for s, e in zip(control_guidance_start, control_guidance_end)
    ]
    controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
is_unet_compiled = is_compiled_module(self.unet)
is_controlnet_compiled = is_compiled_module(self.controlnet)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
with self.progress_bar(total=num_inference_steps) as progress_bar:
    for i, t in enumerate(timesteps):
        if network is not None:
            if t>start_noise:
                network.set_lora_slider(scale=0)
            else:
                network.set_lora_slider(scale=alpha_slider)

        # Relevant thread:
        # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
        if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
            torch._inductor.cudagraph_mark_step_begin()
        # expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

        # controlnet(s) inference
        if guess_mode and self.do_classifier_free_guidance:
            # Infer ControlNet only for the conditional batch.
            control_model_input = latents
            control_model_input = self.scheduler.scale_model_input(control_model_input, t)
            controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
        else:
            control_model_input = latent_model_input
            controlnet_prompt_embeds = prompt_embeds

        if isinstance(controlnet_keep[i], list):
            cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
        else:
            controlnet_cond_scale = controlnet_conditioning_scale
            if isinstance(controlnet_cond_scale, list):
                controlnet_cond_scale = controlnet_cond_scale[0]
            cond_scale = controlnet_cond_scale * controlnet_keep[i]

        down_block_res_samples, mid_block_res_sample = self.controlnet(
            control_model_input,
            t,
            encoder_hidden_states=controlnet_prompt_embeds,
            controlnet_cond=image,
            conditioning_scale=cond_scale,
            guess_mode=guess_mode,
            return_dict=False,
        )

        if guess_mode and self.do_classifier_free_guidance:
            # Infered ControlNet only for the conditional batch.
            # To apply the output of ControlNet to both the unconditional and conditional batches,
            # add 0 to the unconditional batch to keep it unchanged.
            down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
            mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

        # predict the noise residual
        with network:
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                cross_attention_kwargs=self.cross_attention_kwargs,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

        # perform guidance
        if self.do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

        if callback_on_step_end is not None:
            callback_kwargs = {}
            for k in callback_on_step_end_tensor_inputs:
                callback_kwargs[k] = locals()[k]
            callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

            latents = callback_outputs.pop("latents", latents)
            prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
            negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

        # call the callback, if provided
        if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
            progress_bar.update()
            if callback is not None and i % callback_steps == 0:
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)

# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
    self.unet.to("cpu")
    self.controlnet.to("cpu")
    torch.cuda.empty_cache()

if not output_type == "latent":
    image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
        0
    ]
    image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
    image = latents
    has_nsfw_concept = None

if has_nsfw_concept is None:
    do_denormalize = [True] * image.shape[0]
else:
    do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

# Offload all models
self.maybe_free_model_hooks()

if not return_dict:
    return (image, has_nsfw_concept)

return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

Thanks for the amazing resource!