Closed ptitle closed 1 year ago
Thanks, I now get:
library(predicts)
#Loading required package: terra
#terra 1.7.50
tmn <- tmx <- prc <- rast(nrow=10, ncol=10, nlyr=12)
values(tmn) <- replicate(12, runif(ncell(tmn), 0,50))
values(tmx) <- replicate(12, runif(ncell(tmx), 0,50))
values(prc) <- replicate(12, runif(ncell(prc), 0,2000))
naCell <- sample(1:ncell(tmn), 10)
## you should not use
## values(tmn)[naCell] <- NA
tmn[naCell] <- NA
tmx[naCell] <- NA
prc[naCell] <- NA
b <- bcvars(prc, tmn, tmx)
b
#class : SpatRaster
#dimensions : 10, 10, 19 (nrow, ncol, nlyr)
#resolution : 36, 18 (x, y)
#extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
#coord. ref. : lon/lat WGS 84
#source(s) : memory
#names : bio1, bio2, bio3, bio4, bio5, bio6, ...
#min values : 17.50191, -12.60698, -38.25027, 479.0143, 28.85657, 0.0239315, ...
#max values : 30.18866, 12.07755, 26.61873, 1457.8055, 49.88754, 18.9475465, ...
Thanks!
Here I generate some random SpatRasters, and add some missing cells.