rstudio / keras3

R Interface to Keras
https://keras3.posit.co/
Other
838 stars 283 forks source link

Keras RStudio Tensorflow does not use GPU Windows 10 VM #701

Closed eafpres closed 5 years ago

eafpres commented 5 years ago

I've been going in circles all afternoon, so I'm resorting to asking for help here. I have a Windows 10 VM with an Nvidia Tesla M60 GPU I installed anaconda / python I installed CUDA Initially, I was getting the module keras not found sort of error I followed the advice here https://github.com/rstudio/keras/issues/647 and got TF 1.12 installed and then it would find keras again However, it does not use the GPU I ran install_keras(tensorflow = "gpu") which breaks the install: use_session_with_seed(seed, disable_gpu = FALSE, disable_parallel_cpu = FALSE) Error: Installation of TensorFlow not found.

Python environments searched for 'tensorflow' package: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe C:\ProgramData\Anaconda3\python.exe C:\Users\eafpres\AppData\Local\Programs\Python\Python37\python.exe C:\ProgramData\Anaconda3\python.exe

You can install TensorFlow using the install_tensorflow() function.

Or skipping the session command: nn_model <- keras_model_sequential() %>% layer_dense(units = ncol(x_train), activation = activation, input_shape = c(ncol(x_train)), kernel_initializer = initializer_random_normal())

gives Error: Python module tensorflow.python.keras was not found.

Detected Python configuration:

python: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe libpython: C:/ProgramData/Anaconda3/envs/r-tensorflow/python36.dll pythonhome: C:\PROGRA~3\ANACON~1\envs\R-TENS~1 version: 3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)] Architecture: 64bit numpy: C:\PROGRA~3\ANACON~1\envs\R-TENS~1\lib\site-packages\numpy numpy_version: 1.16.2 tensorflow: C:\PROGRA~3\ANACON~1\envs\R-TENS~1\lib\site-packages\tensorflow__init__.p

python versions found: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe C:\PROGRA~3\ANACON~1\python.exe C:\Users\eafpres\AppData\Local\Programs\Python\Python37\python.exe C:\ProgramData\Anaconda3\python.exe

I can go back and rerun tensorflow::install_tensorflow()

which runs with no errors

And start over, but after all of it, it is not using the GPU:

use_session_with_seed(seed, disable_gpu = FALSE, disable_parallel_cpu = FALSE)

2019-03-14 23:29:04.134424: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2 2019-03-14 23:29:04.135806: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 6. Tune using inter_op_parallelism_threads for best performance. Set session seed to 790264

Any suggestions?

eafpres commented 5 years ago

I tried the nightly build as suggested here: https://github.com/rstudio/keras/issues/601 as I have CUDA 10.0 installed

but it still does not use the GPU

eafpres commented 5 years ago

I recall from a past install on my local machine there can be PATH issues, but n this case I don't know how to determine that. Here's the output from Sys.getenv():

ALLUSERSPROFILE C:\ProgramData APPDATA C:\Users\eafpres\AppData\Roaming CLICOLOR_FORCE 1 CLIENTNAME EAF-LLC CommonProgramFiles C:\Program Files\Common Files CommonProgramFiles(x86) C:\Program Files (x86)\Common Files CommonProgramW6432 C:\Program Files\Common Files COMPUTERNAME yallotradegpu ComSpec C:\windows\system32\cmd.exe CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 DISPLAY :0 DriverData C:\Windows\System32\Drivers\DriverData GFORTRAN_STDERR_UNIT -1 GFORTRAN_STDOUT_UNIT -1 HOME C:/Users/eafpres/Documents HOMEDRIVE C: HOMEPATH \Users\eafpres LOCALAPPDATA C:\Users\eafpres\AppData\Local LOGONSERVER \yallotradegpu MSYS2_ENV_CONV_EXCL R_ARCH NUMBER_OF_PROCESSORS 6 NVCUDASAMPLES_ROOT C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1 NVCUDASAMPLES10_1_ROOT C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1 NVTOOLSEXT_PATH C:\Program Files\NVIDIA Corporation\NvToolsExt\ OneDrive C:\Users\eafpres\OneDrive OS Windows_NT PATH C:\ProgramData\Anaconda3\envs\r-tensorflow;C:\ProgramData\Anaconda3\envs\r-tensorflow\Scripts;C:\ProgramData\Anaconda3\envs\r-tensorflow\Library\bin;C:\Program Files\R\R-3.5.2\bin\x64;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp;C:\ProgramData\Anaconda3;C:\ProgramData\Anaconda3\Library\mingw-w64\bin;C:\ProgramData\Anaconda3\Library\usr\bin;C:\ProgramData\Anaconda3\Library\bin;C:\ProgramData\Anaconda3\Scripts;C:\windows\system32;C:\windows;C:\windows\System32\Wbem;C:\windows\System32\WindowsPowerShell\v1.0\;C:\windows\System32\OpenSSH\;C:\Program Files\NVIDIA Corporation\Nsight Compute 2019.1\;C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Users\eafpres\AppData\Local\Programs\Python\Python37\Scripts\;C:\Users\eafpres\AppData\Local\Programs\Python\Python37\;C:\Users\eafpres\AppData\Local\Microsoft\WindowsApps;;C:\Users\eafpres\AppData\Local\Programs\Microsoft VS Code\bin PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC PROCESSOR_ARCHITECTURE AMD64 PROCESSOR_IDENTIFIER Intel64 Family 6 Model 63 Stepping 2, GenuineIntel PROCESSOR_LEVEL 6 PROCESSOR_REVISION 3f02 ProgramData C:\ProgramData ProgramFiles C:\Program Files ProgramFiles(x86) C:\Program Files (x86) ProgramW6432 C:\Program Files PSModulePath C:\Program Files\WindowsPowerShell\Modules;C:\windows\system32\WindowsPowerShell\v1.0\Modules PUBLIC C:\Users\Public PYTHONHASHSEED 0 R_ARCH /x64 R_COMPILED_BY gcc 4.9.3 R_DOC_DIR C:/PROGRA~1/R/R-35~1.2/doc R_HOME C:/PROGRA~1/R/R-35~1.2 R_LIBS_USER C:/Users/eafpres/Documents/R/win-library/3.5 R_SESSION_INITIALIZED PID=8264:NAME="reticulate" R_USER C:/Users/eafpres/Documents RETICULATE_REQUIRED_MODULE tensorflow RMARKDOWN_MATHJAX_PATH C:/Program Files/RStudio/resources/mathjax-26 RS_LOCAL_PEER \.\pipe\20433-rsession RS_RPOSTBACK_PATH C:/Program Files/RStudio/bin/rpostback RS_SHARED_SECRET 63341846741 RSTUDIO 1 RSTUDIO_CONSOLE_COLOR 256 RSTUDIO_CONSOLE_WIDTH 80 RSTUDIO_MSYS_SSH C:/Program Files/RStudio/bin/msys-ssh-1000-18 RSTUDIO_PANDOC C:/Program Files/RStudio/bin/pandoc RSTUDIO_SESSION_PORT 20433 RSTUDIO_USER_IDENTITY eafpres RSTUDIO_WINUTILS C:/Program Files/RStudio/bin/winutils SESSIONNAME RDP-Tcp#23 SystemDrive C: SystemRoot C:\windows TEMP C:\Users\eafpres\AppData\Local\Temp TERM xterm-256color TF_CPP_MIN_LOG_LEVEL 1 TMP C:\Users\eafpres\AppData\Local\Temp USERDOMAIN yallotradegpu USERDOMAIN_ROAMINGPROFILE yallotradegpu USERNAME eafpres USERPROFILE C:\Users\eafpres windir C:\windows

eafpres commented 5 years ago

Today I created a new VM using Azure's pre-configured Deep Learning configuration; the main feature being it is pre-configured with CUDA 9.x; I reinstalled R and R Studio to avoid using Windows Open R, and installed keras and tensforflow with no problems and my code runs with the GPU. This leads me to think there could be an issue using CUDA 10.x with Keras in R. If I can find time I may reconfigure the other machine back to CUDA 9.x and see if that works.

skeydan commented 5 years ago

Hi,

if you install TensorFlow 1.13.1 (which is the current default in

devtools::install_github("rstudio/tensorflow")
library(tensorflow)
install_tensorflow(version="gpu")

you should get a binary that works with CUDA 10:

https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md

However, if you use TF 1.12 or lower you'll need CUDA 9.

eafpres commented 5 years ago

Thank you for this update. I will give it a try. To clarify, since I'm using Keras, would the sequence be: install.packages("keras") library(keras) Install_keras() devtools::install_github("rstudio/tensorflow") library(tensorflow) install_tensorflow(version = "gpu")

skeydan commented 5 years ago

you only need to

install_tensorflow(version = "gpu")

this will also install keras

eafpres commented 5 years ago

I did the devtools install and it appeared to go normally; however when I tried to use it: Error: Installation of TensorFlow not found.

Python environments searched for 'tensorflow' package: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe C:\ProgramData\Anaconda3\python.exe C:\Users\eafpres\AppData\Local\Programs\Python\Python37\python.exe C:\ProgramData\Anaconda3\python.exe

You can install TensorFlow using the install_tensorflow() function.

So I ran: library(tensorflow) install_tensorflow(version = "gpu") again, and:

library(tensorflow)

Attaching package: ‘tensorflow’

The following object is masked from ‘package:caret’:

train

install_tensorflow(version = "gpu")

Remove all packages in environment C:\PROGRA~3\ANACON~1\envs\r-tensorflow:

Package Plan

environment location: C:\PROGRA~3\ANACON~1\envs\r-tensorflow

The following packages will be REMOVED:

asn1crypto:      0.24.0-py37_1003              conda-forge
blas:            1.0-mkl                                  
ca-certificates: 2019.3.9-hecc5488_0           conda-forge
certifi:         2019.3.9-py37_0               conda-forge
cffi:            1.12.2-py37hb32ad35_1         conda-forge
chardet:         3.0.4-py37_1003               conda-forge
cryptography:    2.6.1-py37h7a1dbc1_0                     
freetype:        2.10.0-h5db478b_0             conda-forge
h5py:            2.9.0-nompi_py37h3cb27cb_1102 conda-forge
hdf5:            1.10.4-nompi_hcc15c50_1106    conda-forge
icc_rt:          2019.0.0-h0cc432a_1                      
idna:            2.8-py37_1000                 conda-forge
intel-openmp:    2019.3-203                               
jpeg:            9c-hfa6e2cd_1001              conda-forge
libblas:         3.8.0-4_mkl                   conda-forge
libcblas:        3.8.0-4_mkl                   conda-forge
liblapack:       3.8.0-4_mkl                   conda-forge
libpng:          1.6.36-h7602738_1000          conda-forge
libtiff:         4.0.10-h36446d0_1001          conda-forge
mkl:             2019.1-144                               
numpy:           1.16.2-py37h8078771_1         conda-forge
olefile:         0.46-py_0                     conda-forge
openssl:         1.1.1b-hfa6e2cd_2             conda-forge
pillow:          5.4.1-py37h9a613e6_1000       conda-forge
pip:             19.0.3-py37_0                            
pycparser:       2.19-py37_1                   conda-forge
pyopenssl:       19.0.0-py37_0                 conda-forge
pyreadline:      2.1-py37_1000                 conda-forge
pysocks:         1.6.8-py37_1002               conda-forge
python:          3.7.2-h8c8aaf0_10                        
pyyaml:          5.1-py37hfa6e2cd_0            conda-forge
requests:        2.21.0-py37_1000              conda-forge
scipy:           1.2.1-py37h29ff71c_0                     
setuptools:      40.8.0-py37_0                            
six:             1.12.0-py37_1000              conda-forge
sqlite:          3.27.2-he774522_0                        
tk:              8.6.9-hfa6e2cd_1000           conda-forge
urllib3:         1.24.1-py37_1000              conda-forge
vc:              14.1-h0510ff6_4                          
vs2015_runtime:  14.15.26706-h3a45250_0                   
wheel:           0.33.1-py37_0                            
win_inet_pton:   1.1.0-py37_0                  conda-forge
wincertstore:    0.2-py37_0                               
yaml:            0.1.7-hfa6e2cd_1001           conda-forge
zlib:            1.2.11-h2fa13f4_1004          conda-forge

Creating r-tensorflow conda environment for TensorFlow installation... Solving environment: ...working... done

==> WARNING: A newer version of conda exists. <== current version: 4.5.12 latest version: 4.6.8

Please update conda by running

$ conda update -n base -c defaults conda

Package Plan

environment location: C:\PROGRA~3\ANACON~1\envs\r-tensorflow

added / updated specs:

The following packages will be downloaded:

package                    |            build
---------------------------|-----------------
certifi-2019.3.9           |           py37_0         155 KB

The following NEW packages will be INSTALLED:

ca-certificates: 2019.1.23-0           
certifi:         2019.3.9-py37_0       
openssl:         1.1.1b-he774522_1     
pip:             19.0.3-py37_0         
python:          3.7.2-h8c8aaf0_10     
setuptools:      40.8.0-py37_0         
sqlite:          3.27.2-he774522_0     
vc:              14.1-h0510ff6_4       
vs2015_runtime:  14.15.26706-h3a45250_0
wheel:           0.33.1-py37_0         
wincertstore:    0.2-py37_0            

Downloading and Extracting Packages certifi-2019.3.9 | 155 KB | ########## | 100% Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done #

To activate this environment, use:

> activate r-tensorflow

#

To deactivate an active environment, use:

> deactivate

#

* for power-users using bash, you must source

#

Installing TensorFlow... Collecting tensorflow-gpu==1.13.1 from https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.13.1-cp37-cp37m-win_amd64.whl Using cached https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.13.1-cp37-cp37m-win_amd64.whl Collecting astor>=0.6.0 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/35/6b/11530768cac581a12952a2aad00e1526b89d242d0b9f59534ef6e6a1752f/astor-0.7.1-py2.py3-none-any.whl Collecting termcolor>=1.1.0 (from tensorflow-gpu==1.13.1) Collecting wheel>=0.26 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/96/ba/a4702cbb6a3a485239fbe9525443446203f00771af9ac000fa3ef2788201/wheel-0.33.1-py2.py3-none-any.whl Collecting keras-preprocessing>=1.0.5 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/c0/bf/0315ef6a9fd3fc2346e85b0ff1f5f83ca17073f2c31ac719ab2e4da0d4a3/Keras_Preprocessing-1.0.9-py2.py3-none-any.whl Collecting six>=1.10.0 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl Collecting grpcio>=1.8.6 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/9c/50/1fd6e3cb2cc0b9f88aa396020b0a831a2e8fb63a4479d1dfb4ae64b654bf/grpcio-1.19.0-cp37-cp37m-win_amd64.whl Collecting gast>=0.2.0 (from tensorflow-gpu==1.13.1) Collecting tensorflow-estimator<1.14.0rc0,>=1.13.0 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/bb/48/13f49fc3fa0fdf916aa1419013bb8f2ad09674c275b4046d5ee669a46873/tensorflow_estimator-1.13.0-py2.py3-none-any.whl Collecting numpy>=1.13.3 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/3a/3c/515afabfe4f29bfc0a67037efaf518c33d0076b32d22ba865241cee295c4/numpy-1.16.2-cp37-cp37m-win_amd64.whl Collecting keras-applications>=1.0.6 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/90/85/64c82949765cfb246bbdaf5aca2d55f400f792655927a017710a78445def/Keras_Applications-1.0.7-py2.py3-none-any.whl Collecting absl-py>=0.1.6 (from tensorflow-gpu==1.13.1) Collecting protobuf>=3.6.1 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/9d/71/46f8c3945a1bb4671335c9d13caa17fe97686c0355679a1e563132e3cb2e/protobuf-3.7.0-cp37-cp37m-win_amd64.whl Collecting tensorboard<1.14.0,>=1.13.0 (from tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/0f/39/bdd75b08a6fba41f098b6cb091b9e8c7a80e1b4d679a581a0ccd17b10373/tensorboard-1.13.1-py3-none-any.whl Collecting mock>=2.0.0 (from tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/e6/35/f187bdf23be87092bd0f1200d43d23076cee4d0dec109f195173fd3ebc79/mock-2.0.0-py2.py3-none-any.whl Collecting h5py (from keras-applications>=1.0.6->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/4f/1e/89aa610afce8df6fd1f12647600a05e902238587ae6375442a3164b59d51/h5py-2.9.0-cp37-cp37m-win_amd64.whl Collecting setuptools (from protobuf>=3.6.1->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/d1/6a/4b2fcefd2ea0868810e92d519dacac1ddc64a2e53ba9e3422c3b62b378a6/setuptools-40.8.0-py2.py3-none-any.whl Collecting werkzeug>=0.11.15 (from tensorboard<1.14.0,>=1.13.0->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/24/4d/2fc4e872fbaaf44cc3fd5a9cd42fda7e57c031f08e28c9f35689e8b43198/Werkzeug-0.15.1-py2.py3-none-any.whl Collecting markdown>=2.6.8 (from tensorboard<1.14.0,>=1.13.0->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/7a/6b/5600647404ba15545ec37d2f7f58844d690baf2f81f3a60b862e48f29287/Markdown-3.0.1-py2.py3-none-any.whl Collecting pbr>=0.11 (from mock>=2.0.0->tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow-gpu==1.13.1) Using cached https://files.pythonhosted.org/packages/14/09/12fe9a14237a6b7e0ba3a8d6fcf254bf4b10ec56a0185f73d651145e9222/pbr-5.1.3-py2.py3-none-any.whl Installing collected packages: astor, termcolor, wheel, six, numpy, keras-preprocessing, grpcio, gast, pbr, mock, absl-py, tensorflow-estimator, h5py, keras-applications, setuptools, protobuf, werkzeug, markdown, tensorboard, tensorflow-gpu Successfully installed absl-py-0.7.1 astor-0.7.1 gast-0.2.2 grpcio-1.19.0 h5py-2.9.0 keras-applications-1.0.7 keras-preprocessing-1.0.9 markdown-3.0.1 mock-2.0.0 numpy-1.16.2 pbr-5.1.3 protobuf-3.7.0 setuptools-40.8.0 six-1.12.0 tensorboard-1.13.1 tensorflow-estimator-1.13.0 tensorflow-gpu-1.13.1 termcolor-1.1.0 werkzeug-0.15.1 wheel-0.33.1 Solving environment: ...working... done

==> WARNING: A newer version of conda exists. <== current version: 4.5.12 latest version: 4.6.8

Please update conda by running

$ conda update -n base -c defaults conda

Package Plan

environment location: C:\PROGRA~3\ANACON~1\envs\r-tensorflow

added / updated specs:

The following packages will be downloaded:

package                    |            build
---------------------------|-----------------
certifi-2019.3.9           |           py37_0         149 KB  conda-forge

The following NEW packages will be INSTALLED:

asn1crypto:      0.24.0-py37_1003              conda-forge
blas:            1.0-mkl                                  
cffi:            1.12.2-py37hb32ad35_1         conda-forge
chardet:         3.0.4-py37_1003               conda-forge
cryptography:    2.6.1-py37h7a1dbc1_0                     
freetype:        2.10.0-h5db478b_0             conda-forge
h5py:            2.9.0-nompi_py37h3cb27cb_1102 conda-forge
hdf5:            1.10.4-nompi_hcc15c50_1106    conda-forge
icc_rt:          2019.0.0-h0cc432a_1                      
idna:            2.8-py37_1000                 conda-forge
intel-openmp:    2019.3-203                               
jpeg:            9c-hfa6e2cd_1001              conda-forge
libblas:         3.8.0-4_mkl                   conda-forge
libcblas:        3.8.0-4_mkl                   conda-forge
liblapack:       3.8.0-4_mkl                   conda-forge
libpng:          1.6.36-h7602738_1000          conda-forge
libtiff:         4.0.10-h36446d0_1001          conda-forge
mkl:             2019.1-144                               
numpy:           1.16.2-py37h8078771_1         conda-forge
olefile:         0.46-py_0                     conda-forge
pillow:          5.4.1-py37h9a613e6_1000       conda-forge
pycparser:       2.19-py37_1                   conda-forge
pyopenssl:       19.0.0-py37_0                 conda-forge
pyreadline:      2.1-py37_1000                 conda-forge
pysocks:         1.6.8-py37_1002               conda-forge
pyyaml:          5.1-py37hfa6e2cd_0            conda-forge
requests:        2.21.0-py37_1000              conda-forge
scipy:           1.2.1-py37h29ff71c_0                     
six:             1.12.0-py37_1000              conda-forge
tk:              8.6.9-hfa6e2cd_1000           conda-forge
urllib3:         1.24.1-py37_1000              conda-forge
win_inet_pton:   1.1.0-py37_0                  conda-forge
yaml:            0.1.7-hfa6e2cd_1001           conda-forge
zlib:            1.2.11-h2fa13f4_1004          conda-forge

The following packages will be UPDATED:

ca-certificates: 2019.1.23-0                               --> 2019.3.9-hecc5488_0 conda-forge
certifi:         2019.3.9-py37_0                           --> 2019.3.9-py37_0     conda-forge
openssl:         1.1.1b-he774522_1                         --> 1.1.1b-hfa6e2cd_2   conda-forge

Downloading and Extracting Packages certifi-2019.3.9 | 149 KB | ########## | 100% Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done Collecting keras Using cached https://files.pythonhosted.org/packages/5e/10/aa32dad071ce52b5502266b5c659451cfd6ffcbf14e6c8c4f16c0ff5aaab/Keras-2.2.4-py2.py3-none-any.whl Collecting tensorflow-hub Using cached https://files.pythonhosted.org/packages/9e/f0/3a3ced04c8359e562f1b91918d9bde797c8a916fcfeddc8dc5d673d1be20/tensorflow_hub-0.3.0-py2.py3-none-any.whl Collecting tensorflow-probability Using cached https://files.pythonhosted.org/packages/4e/93/191e42ca27786d6875f74e7b756e34ef42f385f6d250bfc28aa48a1d1072/tensorflow_probability-0.6.0-py2.py3-none-any.whl Requirement already satisfied, skipping upgrade: six>=1.9.0 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (1.12.0) Requirement already satisfied, skipping upgrade: scipy>=0.14 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (1.2.1) Requirement already satisfied, skipping upgrade: h5py in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (2.9.0) Requirement already satisfied, skipping upgrade: keras-preprocessing>=1.0.5 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (1.0.9) Requirement already satisfied, skipping upgrade: numpy>=1.9.1 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (1.16.2) Requirement already satisfied, skipping upgrade: pyyaml in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (5.1) Requirement already satisfied, skipping upgrade: keras-applications>=1.0.6 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from keras) (1.0.7) Requirement already satisfied, skipping upgrade: protobuf>=3.4.0 in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from tensorflow-hub) (3.7.0) Requirement already satisfied, skipping upgrade: setuptools in c:\progra~3\anacon~1\envs\r-tensorflow\lib\site-packages (from protobuf>=3.4.0->tensorflow-hub) (40.8.0) Installing collected packages: keras, tensorflow-hub, tensorflow-probability Successfully installed keras-2.2.4 tensorflow-hub-0.3.0 tensorflow-probability-0.6.0

Installation complete.

Restarting R session...

but the result is the same: Error: Installation of TensorFlow not found.

Python environments searched for 'tensorflow' package: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe C:\ProgramData\Anaconda3\python.exe C:\Users\eafpres\AppData\Local\Programs\Python\Python37\python.exe C:\ProgramData\Anaconda3\python.exe

You can install TensorFlow using the install_tensorflow() function.

dfalbel commented 5 years ago

@eafpres Can you please share your reticulate::py_config()?

eafpres commented 5 years ago

@dfalbel

reticulate::py_config() python: C:\PROGRA~3\ANACON~1\python.exe libpython: C:/PROGRA~3/ANACON~1/python37.dll pythonhome: C:\PROGRA~3\ANACON~1 version: 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Architecture: 64bit numpy: C:\PROGRA~3\ANACON~1\lib\site-packages\numpy numpy_version: 1.15.4 tensorflow: [NOT FOUND]

python versions found: C:\ProgramData\Anaconda3\envs\r-tensorflow\python.exe C:\PROGRA~3\ANACON~1\python.exe C:\Users\eafpres\AppData\Local\Programs\Python\Python37\python.exe C:\ProgramData\Anaconda3\python.exe

dfalbel commented 5 years ago

@eafpres Sorry, was this solved in #755 ?

eafpres commented 5 years ago

@dfalbel—no, this one I haven’t been able to fix yet.

skeydan commented 5 years ago

As you had that other issue about disabling GPU usage, am I correct to assume this can be closed?

eafpres commented 5 years ago

This was a different machine and I could never resolve it, but moved to a different machine. I’m okay to close, though.

skeydan commented 5 years ago

Okay, thanks for responding!