Open rtoy opened 3 months ago
Imported from SourceForge on 2024-07-08 20:10:25 Created by rswarbrick on 2015-10-03 23:09:26 Original: https://sourceforge.net/p/maxima/bugs/3024/#2f85
One interesting fact is that if you ask Maxima to come up with an antiderivative, it succeeds:
:::text
(%i1) antideriv: integrate(1/(1 - exp(%i*x))^(1/2), x);
(%o1) %i*log(sqrt(1-%e^(%i*x))+1)-%i*log(sqrt(1-%e^(%i*x))-1)
and the real part of this expression goes from - %pi
at x = 0
through to %pi
at x = 2 * %pi
, as you'd expect.
If you do the definite integral and trace the integrator function, you see it compute the following antiderivative:
:::text
(%i2) integrate(1/(1 - exp(%i*x))^(1/2), x, 0, 2*%pi);
0: (INTEGRATOR
((MEXPT SIMP)
((MPLUS SIMP) 1
((MTIMES SIMP) -1 ((MEXPT SIMP) $%E ((MTIMES SIMP) $%I $X))))
((RAT SIMP) -1 2))
$X)
1: (INTEGRATOR
((MTIMES SIMP) -1 $%I
((MEXPT SIMP) ((MPLUS SIMP) 1 ((MTIMES SIMP) -1 $X))
((RAT SIMP) -1 2))
((MEXPT SIMP) $X -1))
$X)
1: INTEGRATOR returned
((MTIMES SIMP) -1 $%I
((MPLUS SIMP)
((%LOG SIMP)
((MABS SIMP)
((MPLUS SIMP) -1
((MEXPT SIMP) ((MPLUS SIMP) 1 ((MTIMES SIMP) -1 $X))
((RAT SIMP) 1 2)))))
((MTIMES SIMP) -1
((%LOG SIMP)
((MPLUS SIMP) 1
((MEXPT SIMP) ((MPLUS SIMP) 1 ((MTIMES SIMP) -1 $X))
((RAT SIMP) 1 2)))))))
0: INTEGRATOR returned
((MPLUS SIMP)
((MTIMES SIMP) $%I
((%LOG SIMP)
((MPLUS SIMP) 1
((MEXPT SIMP)
((MPLUS SIMP) 1
((MTIMES SIMP) -1 ((MEXPT SIMP) $%E ((MTIMES SIMP) $%I $X))))
((RAT SIMP) 1 2)))))
((MTIMES SIMP) -1 $%I
((%LOG SIMP)
((MABS SIMP)
((MPLUS SIMP) -1
((MEXPT SIMP)
((MPLUS SIMP) 1
((MTIMES SIMP) -1 ((MEXPT SIMP) $%E ((MTIMES SIMP) $%I $X))))
((RAT SIMP) 1 2)))))))
(%o2) 0
which is:
:::text
(%o4) %i*log(sqrt(1-%e^(%i*x))+1)-%i*log(abs(sqrt(1-%e^(%i*x))-1))
(notice the abs
functions). The imaginary parts agree, but the real parts do not.
Imported from SourceForge on 2024-07-08 20:10:24 Created by dprodanov on 2015-09-17 19:52:28 Original: https://sourceforge.net/p/maxima/bugs/3024
The answer is 0 but should be
2 * %pi
by the residue theorem. On the other hand, the caseis handled properly