Closed hingkan closed 3 months ago
To retrieve data from an existing Milvus index using llama_index
, you need to ensure that the MilvusVectorStore
is correctly initialized and that the StorageContext
is properly set up to load the index. Here is how you can do it:
MilvusVectorStore
with the appropriate parameters.StorageContext
with the vector_store
.load_index_from_storage
function to load the index from the storage context.Here is an example code snippet:
from llama_index.indices.loading import load_index_from_storage
from llama_index.storage import StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
# Initialize the MilvusVectorStore
vector_store = MilvusVectorStore(
uri="http://localhost:19530", # replace with your Milvus instance URI
dim=1792, # replace with the dimension of your embeddings
overwrite=False, # set to False to use an existing collection
index_config={
'metric_type': 'IP',
'index_type': "FLAT",
}
)
# Create a StorageContext with the vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Load the index from the storage context
index = load_index_from_storage(storage_context=storage_context)
# Now you can use the index to retrieve data
query_vector = [0.1, 0.2, 0.3] # Example query vector
documents = index.as_retriever().retrieve(query_vector)
# Print the retrieved documents
for doc in documents:
print(f"Document ID: {doc.id_}, Text: {doc.text}")
This code will connect to the Milvus instance, load the existing index, and allow you to retrieve documents using a query vector. Make sure to replace the uri
, dim
, and query_vector
with your actual values [1][2].
To continue talking to Dosu, mention @dosu.
To retrieve data from an existing Milvus index using
llama_index
, you need to ensure that theMilvusVectorStore
is correctly initialized and that theStorageContext
is properly set up to load the index. Here is how you can do it:
- Initialize the
MilvusVectorStore
with the appropriate parameters.- Create a
StorageContext
with thevector_store
.- Use the
load_index_from_storage
function to load the index from the storage context.Here is an example code snippet:
from llama_index.indices.loading import load_index_from_storage from llama_index.storage import StorageContext from llama_index.vector_stores.milvus import MilvusVectorStore # Initialize the MilvusVectorStore vector_store = MilvusVectorStore( uri="http://localhost:19530", # replace with your Milvus instance URI dim=1792, # replace with the dimension of your embeddings overwrite=False, # set to False to use an existing collection index_config={ 'metric_type': 'IP', 'index_type': "FLAT", } ) # Create a StorageContext with the vector store storage_context = StorageContext.from_defaults(vector_store=vector_store) # Load the index from the storage context index = load_index_from_storage(storage_context=storage_context) # Now you can use the index to retrieve data query_vector = [0.1, 0.2, 0.3] # Example query vector documents = index.as_retriever().retrieve(query_vector) # Print the retrieved documents for doc in documents: print(f"Document ID: {doc.id_}, Text: {doc.text}")
This code will connect to the Milvus instance, load the existing index, and allow you to retrieve documents using a query vector. Make sure to replace the
uri
,dim
, andquery_vector
with your actual values [1][2].To continue talking to Dosu, mention @dosu.
But 'load_index_from_storage()' will report an error, error message 'ValueError: No index in storage context, check if you specified the right persist_dir.'
Does llama_index only define Milvus' join and index creation, but not Milvus' data loading and corresponding index generation?
To correctly load and retrieve data from an existing Milvus index using llama_index
, you need to ensure that the index has been properly persisted and that the StorageContext
is correctly configured to point to the right storage directory. Here is a more detailed approach:
load_index_from_storage
function to load the index from the storage context.Here is an example of how to persist and then load the index:
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader
# Initialize the MilvusVectorStore
vector_store = MilvusVectorStore(
uri="http://localhost:19530", # Replace with your Milvus instance URI
dim=1792, # Replace with the dimension of your embeddings
overwrite=True,
index_config={
'metric_type': 'IP',
'index_type': "FLAT",
}
)
# Create a StorageContext with the vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Load documents
documents = SimpleDirectoryReader(
input_files=["./data/your_data_file.txt"]
).load_data()
# Create an index over the documents
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# Persist the index
storage_context.persist(persist_dir="./storage")
from llama_index.indices.loading import load_index_from_storage
from llama_index.storage import StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
# Initialize the MilvusVectorStore
vector_store = MilvusVectorStore(
uri="http://localhost:19530", # Replace with your Milvus instance URI
dim=1792, # Replace with the dimension of your embeddings
overwrite=False,
index_config={
'metric_type': 'IP',
'index_type': "FLAT",
}
)
# Create a StorageContext with the vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir="./storage")
# Load the index from the storage context
index = load_index_from_storage(storage_context=storage_context)
# Now you can use the index to retrieve data
query_vector = [0.1, 0.2, 0.3] # Example query vector
documents = index.as_retriever().retrieve(query_vector)
# Print the retrieved documents
for doc in documents:
print(f"Document ID: {doc.id_}, Text: {doc.text}")
This approach ensures that the index is first persisted to a directory and then loaded from that directory. Make sure to replace the uri
, dim
, and query_vector
with your actual values [1][2].
To continue talking to Dosu, mention @dosu.
To correctly load and retrieve data from an existing Milvus index using , you need to ensure that the index has been properly persisted and that the is correctly configured to point to the right storage directory. Here is a more detailed approach:
llama_index``StorageContext
- Persist the Index: Ensure that the index is saved to a persistent storage directory.
- Load the Index: Use the function to load the index from the storage context.
load_index_from_storage
Here is an example of how to persist and then load the index:
Persisting the Index
from llama_index.vector_stores.milvus import MilvusVectorStore from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader # Initialize the MilvusVectorStore vector_store = MilvusVectorStore( uri="http://localhost:19530", # Replace with your Milvus instance URI dim=1792, # Replace with the dimension of your embeddings overwrite=True, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", } ) # Create a StorageContext with the vector store storage_context = StorageContext.from_defaults(vector_store=vector_store) # Load documents documents = SimpleDirectoryReader( input_files=["./data/your_data_file.txt"] ).load_data() # Create an index over the documents index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) # Persist the index storage_context.persist(persist_dir="./storage")
Loading the Index
from llama_index.indices.loading import load_index_from_storage from llama_index.storage import StorageContext from llama_index.vector_stores.milvus import MilvusVectorStore # Initialize the MilvusVectorStore vector_store = MilvusVectorStore( uri="http://localhost:19530", # Replace with your Milvus instance URI dim=1792, # Replace with the dimension of your embeddings overwrite=False, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", } ) # Create a StorageContext with the vector store storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir="./storage") # Load the index from the storage context index = load_index_from_storage(storage_context=storage_context) # Now you can use the index to retrieve data query_vector = [0.1, 0.2, 0.3] # Example query vector documents = index.as_retriever().retrieve(query_vector) # Print the retrieved documents for doc in documents: print(f"Document ID: {doc.id_}, Text: {doc.text}")
This approach ensures that the index is first persisted to a directory and then loaded from that directory. Make sure to replace the , , and with your actual values
uri``dim``query_vector
[1][2].To continue talking to Dosu, mention @dosu.
If you use 'storage_context.persist(persist_dir="./storage")' to save the index, isn't loading similar to disk perpetuation?
If you save the index to disk, there is no difference between using the Milvus vector library and not using the Milvus vector library
To correctly load and retrieve data from an existing Milvus index using
llama_index
, you need to ensure that the index has been properly persisted and that theStorageContext
is correctly configured to point to the right storage directory. Here is a more detailed approach:
- Persist the Index: Ensure that the index is saved to a persistent storage directory.
- Load the Index: Use the
load_index_from_storage
function to load the index from the storage context.Here is an example of how to persist and then load the index:
Persisting the Index
from llama_index.vector_stores.milvus import MilvusVectorStore from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader # Initialize the MilvusVectorStore vector_store = MilvusVectorStore( uri="http://localhost:19530", # Replace with your Milvus instance URI dim=1792, # Replace with the dimension of your embeddings overwrite=True, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", } ) # Create a StorageContext with the vector store storage_context = StorageContext.from_defaults(vector_store=vector_store) # Load documents documents = SimpleDirectoryReader( input_files=["./data/your_data_file.txt"] ).load_data() # Create an index over the documents index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) # Persist the index storage_context.persist(persist_dir="./storage")
Loading the Index
from llama_index.indices.loading import load_index_from_storage from llama_index.storage import StorageContext from llama_index.vector_stores.milvus import MilvusVectorStore # Initialize the MilvusVectorStore vector_store = MilvusVectorStore( uri="http://localhost:19530", # Replace with your Milvus instance URI dim=1792, # Replace with the dimension of your embeddings overwrite=False, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", } ) # Create a StorageContext with the vector store storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir="./storage") # Load the index from the storage context index = load_index_from_storage(storage_context=storage_context) # Now you can use the index to retrieve data query_vector = [0.1, 0.2, 0.3] # Example query vector documents = index.as_retriever().retrieve(query_vector) # Print the retrieved documents for doc in documents: print(f"Document ID: {doc.id_}, Text: {doc.text}")
This approach ensures that the index is first persisted to a directory and then loaded from that directory. Make sure to replace the
uri
,dim
, andquery_vector
with your actual values [1][2].To continue talking to Dosu, mention @dosu.
If I use 'storage_context.persist(persist_dir="./storage")' to save the index, do I just need to store index store.json?
No, you do not just need to store the index_store.json
file. When you use storage_context.persist(persist_dir="./storage")
, it persists data to disk under the specified directory, including files related to the document store, vector store, and graph store.
To load the data back, you need to re-create the storage context using the same configuration and directory:
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore.from_persist_dir(persist_dir="./storage"),
index_store=SimpleIndexStore.from_persist_dir(persist_dir="./storage"),
vector_store=SimpleVectorStore.from_persist_dir(persist_dir="./storage"),
graph_store=SimpleGraphStore.from_persist_dir(persist_dir="./storage"),
property_graph_store=SimplePropertyGraphStore.from_persist_dir(persist_dir="./storage")
)
This indicates that multiple components are involved in the persistence process, not just the index_store.json
file [1][2].
To continue talking to Dosu, mention @dosu.
@dosu Can't I just use Milvus's own storage and indexing that exists already? I don't want to persist the data in my project, but still use llamaindex for the retrieval/query engine framework.
In the following code, the index can be retrieved using llama_index. ` vector_store = MilvusVectorStore(uri="http://localhost:19530/", dim=1792, overwrite=True, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", })
storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) `
But how should llama index load the Milvus index?My idea is as follows:
vector_store = MilvusVectorStore(uri="http://localhost:19530/", dim=1792, overwrite=False, index_config={ 'metric_type': 'IP', 'index_type': "FLAT", }) storage_context = StorageContext.from_defaults(vector_store=vector_store) # rebuild storage context index = load_index_from_storage(storage_context) # load index
But there was an unexpected error. ERROR:ValueError: No index in storage context, check if you specified the right persist_dir.
I would like to know how to use llama_index to retrieve Milvus' existing data.