run-llama / llama_index

LlamaIndex is a data framework for your LLM applications
https://docs.llamaindex.ai
MIT License
36.55k stars 5.23k forks source link

How can llamaindex point multiple ElasticSearchStores to the same index_name when using Elasticsearch for storage? #15192

Open hingkan opened 3 months ago

hingkan commented 3 months ago

Question Validation

Question

CODE: ` def get_file_metadata(self, file_name): return { "kd_id": 'knowledge id', "kd_name": 'knowledge name', "update_time": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) }

def conn_es(index_name): ess_args = {'es_url': 'http:localhost:9200', 'index_name': index_name, } store = ElasticsearchStore(**ess_args) return store

pipeline1 = IngestionPipeline(transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=0), ]) storage_context = StorageContext.from_defaults(vector_store=self.index_es)

documents1 = SimpleDirectoryReader(input_dir=doc_path1, file_metadata=get_file_metadata).load_data() nodes1 = pipeline.run(documents=documents1) index1 = VectorStoreIndex(nodes=nodes1, storage_context=storage_context) index1.storage_context.persist(persist_dir='/local/index/index1')

documents2 = SimpleDirectoryReader(input_dir=doc_path2, file_metadata=get_file_metadata).load_data() nodes2 = pipeline.run(documents=documents2) index2 = VectorStoreIndex(nodes=nodes2, storage_context=storage_context) index2.storage_context.persist(persist_dir='/local/index/index2') `

When I use ElasticsearchStore to store data in the same Elasticsearch index several times, the storage_context stored locally each time is a fragment in the Elasticsearch index. May I ask if this search is possible? If not, how to solve it.

dosubot[bot] commented 3 months ago

Using the same index_name for multiple ElasticsearchStore instances means that all instances will interact with the same Elasticsearch index. This can lead to potential conflicts or overwrites if different instances are used to index different sets of documents or if they have different configurations. To ensure that the operations performed by these instances are compatible and do not interfere with each other, you need to manage the indexing and retrieval processes carefully.

Here's how you can point multiple ElasticsearchStore instances to the same index_name and ensure that the storage context is consistent:

  1. Initialize the ElasticsearchStore: Ensure that both instances of ElasticsearchStore are configured to use the same index_name.

    def conn_es(index_name):
       ess_args = {'es_url': 'http://localhost:9200', 'index_name': index_name}
       store = ElasticsearchStore(**ess_args)
       return store
  2. Create a Shared StorageContext: Use a shared StorageContext for both indexing processes to ensure consistency.

    storage_context = StorageContext.from_defaults(vector_store=conn_es('shared_index'))
  3. Ingest and Index Documents: Use the shared StorageContext to ingest and index documents.

    pipeline = IngestionPipeline(transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=0)])
    
    # Index documents from the first directory
    documents1 = SimpleDirectoryReader(input_dir=doc_path1, file_metadata=get_file_metadata).load_data()
    nodes1 = pipeline.run(documents=documents1)
    index1 = VectorStoreIndex(nodes=nodes1, storage_context=storage_context)
    index1.storage_context.persist(persist_dir='/local/index/index1')
    
    # Index documents from the second directory
    documents2 = SimpleDirectoryReader(input_dir=doc_path2, file_metadata=get_file_metadata).load_data()
    nodes2 = pipeline.run(documents=documents2)
    index2 = VectorStoreIndex(nodes=nodes2, storage_context=storage_context)
    index2.storage_context.persist(persist_dir='/local/index/index2')
  4. Querying the Index: When querying, ensure that the StorageContext is loaded correctly to reflect the combined state of the indexed data.

    # Load the persisted storage context
    storage_context = StorageContext.from_defaults(persist_dir='/local/index/index1')
    index = load_index_from_storage(storage_context)
    
    # Perform a query
    query_engine = index.as_query_engine()
    response = query_engine.query("Your query here")
    print(response)

By using a shared StorageContext and ensuring that the same index_name is used consistently, you can manage multiple ElasticsearchStore instances pointing to the same Elasticsearch index without conflicts. This approach ensures that the storage context remains consistent and that the indexed data can be queried effectively [1][2].

To continue talking to Dosu, mention @dosu.