Open hingkan opened 3 months ago
Using the same index_name
for multiple ElasticsearchStore
instances means that all instances will interact with the same Elasticsearch index. This can lead to potential conflicts or overwrites if different instances are used to index different sets of documents or if they have different configurations. To ensure that the operations performed by these instances are compatible and do not interfere with each other, you need to manage the indexing and retrieval processes carefully.
Here's how you can point multiple ElasticsearchStore
instances to the same index_name
and ensure that the storage context is consistent:
Initialize the ElasticsearchStore:
Ensure that both instances of ElasticsearchStore
are configured to use the same index_name
.
def conn_es(index_name):
ess_args = {'es_url': 'http://localhost:9200', 'index_name': index_name}
store = ElasticsearchStore(**ess_args)
return store
Create a Shared StorageContext:
Use a shared StorageContext
for both indexing processes to ensure consistency.
storage_context = StorageContext.from_defaults(vector_store=conn_es('shared_index'))
Ingest and Index Documents:
Use the shared StorageContext
to ingest and index documents.
pipeline = IngestionPipeline(transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=0)])
# Index documents from the first directory
documents1 = SimpleDirectoryReader(input_dir=doc_path1, file_metadata=get_file_metadata).load_data()
nodes1 = pipeline.run(documents=documents1)
index1 = VectorStoreIndex(nodes=nodes1, storage_context=storage_context)
index1.storage_context.persist(persist_dir='/local/index/index1')
# Index documents from the second directory
documents2 = SimpleDirectoryReader(input_dir=doc_path2, file_metadata=get_file_metadata).load_data()
nodes2 = pipeline.run(documents=documents2)
index2 = VectorStoreIndex(nodes=nodes2, storage_context=storage_context)
index2.storage_context.persist(persist_dir='/local/index/index2')
Querying the Index:
When querying, ensure that the StorageContext
is loaded correctly to reflect the combined state of the indexed data.
# Load the persisted storage context
storage_context = StorageContext.from_defaults(persist_dir='/local/index/index1')
index = load_index_from_storage(storage_context)
# Perform a query
query_engine = index.as_query_engine()
response = query_engine.query("Your query here")
print(response)
By using a shared StorageContext
and ensuring that the same index_name
is used consistently, you can manage multiple ElasticsearchStore
instances pointing to the same Elasticsearch index without conflicts. This approach ensures that the storage context remains consistent and that the indexed data can be queried effectively [1][2].
To continue talking to Dosu, mention @dosu.
Question Validation
Question
CODE: ` def get_file_metadata(self, file_name): return { "kd_id": 'knowledge id', "kd_name": 'knowledge name', "update_time": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) }
def conn_es(index_name): ess_args = {'es_url': 'http:localhost:9200', 'index_name': index_name, } store = ElasticsearchStore(**ess_args) return store
pipeline1 = IngestionPipeline(transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=0), ]) storage_context = StorageContext.from_defaults(vector_store=self.index_es)
documents1 = SimpleDirectoryReader(input_dir=doc_path1, file_metadata=get_file_metadata).load_data() nodes1 = pipeline.run(documents=documents1) index1 = VectorStoreIndex(nodes=nodes1, storage_context=storage_context) index1.storage_context.persist(persist_dir='/local/index/index1')
documents2 = SimpleDirectoryReader(input_dir=doc_path2, file_metadata=get_file_metadata).load_data() nodes2 = pipeline.run(documents=documents2) index2 = VectorStoreIndex(nodes=nodes2, storage_context=storage_context) index2.storage_context.persist(persist_dir='/local/index/index2') `
When I use ElasticsearchStore to store data in the same Elasticsearch index several times, the storage_context stored locally each time is a fragment in the Elasticsearch index. May I ask if this search is possible? If not, how to solve it.