run-llama / llama_index

LlamaIndex is a data framework for your LLM applications
https://docs.llamaindex.ai
MIT License
36.64k stars 5.25k forks source link

[Question]: About realtime translation and presentation #16079

Open dinhan92 opened 1 month ago

dinhan92 commented 1 month ago

Question Validation

Question

Is there a way that I can use this package for realtime translation with live subtitle when presentation with powerpoint? I mean in powerpoint, using live subtitle, the spoken language does not have my country language. I hope that I can use llama index for that.

Need some help! Pls!

dosubot[bot] commented 1 month ago

LlamaIndex does not have specific examples or documentation for integrating with PowerPoint or similar presentation software for real-time translation and live subtitles. However, LlamaIndex does support real-time data processing and streaming capabilities, which could be leveraged for such a use case.

To achieve real-time translation with live subtitles, you can use LlamaIndex's built-in support for handling audio input and converting it to text. Here are the steps you can follow:

  1. Transcribe Audio to Text: Use LlamaIndex's integration with audio transcription tools like Azure Speech, AssemblyAI, or OpenAI's Whisper model to transcribe the spoken language into text.

    Example using Azure Speech Tool:

    from llama_index.tools.azure_speech import AzureSpeechToolSpec
    from llama_index.agent.openai import OpenAIAgent
    
    speech_tool = AzureSpeechToolSpec(speech_key="your-key", region="eastus")
    
    agent = OpenAIAgent.from_tools(
       speech_tool.to_tool_list(),
       verbose=True,
    )
    print(agent.chat("summarize the data/speech.wav audio file into a few sentences"))

    Example using AssemblyAI:

    from llama_index.readers.assemblyai import AssemblyAIAudioTranscriptReader
    
    audio_file = "https://storage.googleapis.com/aai-docs-samples/nbc.mp3"
    reader = AssemblyAIAudioTranscriptReader(file_path=audio_file)
    
    docs = reader.load_data()
    print(docs[0].text)

    Example using OpenAI Whisper:

    from pathlib import Path
    from llama_index.readers.file.video_audio.base import VideoAudioReader
    
    reader = VideoAudioReader(model_version="base")
    transcripts = reader.load_data(Path("path/to/your/audio/file.mp3"))
    for document in transcripts:
       print(document.text)
  2. Translate Text: Configure LlamaIndex to use a custom language model for translation purposes. You can define a custom LLM and update prompts to enforce the output language.

    Example:

    from llama_index.core import Settings
    from llama_index.llms.openai import OpenAI
    
    llm = OpenAI(system_prompt="Always respond in your desired language.")
    
    # set a global llm
    Settings.llm = llm
    
    query_engine = load_index_from_storage(
       storage_context,
    ).as_query_engine()
  3. Display Subtitles: Integrate the transcribed and translated text with PowerPoint's live subtitle feature. This step may require custom development to feed the translated text into PowerPoint's subtitle system in real-time.

By combining these steps, you can create a workflow that transcribes spoken language, translates it, and displays it as live subtitles in PowerPoint.

For more details on audio transcription and custom LLM configuration, refer to the following sources:

To continue talking to Dosu, mention @dosu.