Open zimmermann6 opened 11 years ago
some progress comparing my machine (tarte.loria.fr) with Sage 5.5 and "arando" (thanks Dima) with Sage 5.7.beta0.
On my machine:
----------------------------------------------------------------------
| Sage Version 5.5, Release Date: 2012-12-22 |
| Type "notebook()" for the browser-based notebook interface. |
| Type "help()" for help. |
----------------------------------------------------------------------
Loading Sage library. Current Mercurial branch is: 12615b
sage: R.<y> = ZZ[]
sage: f
y^7 + 1400000000000000*y^4 + 12600000000000000*y^3 - 9999999999966400000000000000*y^2 - 19999999999964800000000000000*y - 9999999999987200000000000000
sage: r = f.roots(ring=RDF)
sage: r
[(396340.890167, 1)]
sage: RR(r[0][0]).exact_rational()
3404542322665677/8589934592
On arando:
----------------------------------------------------------------------
| Sage Version 5.7.beta0, Release Date: 2013-01-21 |
| Type "notebook()" for the browser-based notebook interface. |
| Type "help()" for help. |
----------------------------------------------------------------------
**********************************************************************
* *
* Warning: this is a prerelease version, and it may be unstable. *
* *
**********************************************************************
sage: R.<y> = ZZ[]
sage: r = f.roots(ring=RDF)
sage: r
[(396340.890167, 1)]
sage: RR(r[0][0]).exact_rational()
1702271161332839/4294967296
Paul
Consider the following:
On some machines the value of
x
is completely different (see #11672, comment 14). We should investigate why, sinceRDF
(RealDoubleField
) is a wrapper for thedouble
C type, and according to IEEE 754 results should not differ from one combination of architecture/operating-system/compiler to another one.Paul
Component: basic arithmetic
Issue created by migration from https://trac.sagemath.org/ticket/13980