import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
K.set_image_dim_ordering('th')
import numpy from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.utils import np_utils from keras import backend as K K.set_image_dim_ordering('th')
fix random seed for reproducibility
seed = 7 numpy.random.seed(seed)
load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
reshape to be [samples][pixels][width][height]
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32') X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
normalize inputs from 0-255 to 0-1
X_train = X_train / 255 X_test = X_test / 255
one hot encode outputs
y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1]
def baseline_model():
create model
build the model
model = baseline_model()
Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2)
Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0) print("CNN Error: %.2f%%" % (100-scores[1]*100))