santhoshkolloju / Abstractive-Summarization-With-Transfer-Learning

Abstractive summarisation using Bert as encoder and Transformer Decoder
406 stars 98 forks source link

While running this block i.e. the last block #1

Closed makamkkumar closed 5 years ago

makamkkumar commented 5 years ago

While running this block i.e. the last block

_#tx.utils.maybe_create_dir(model_dir)

logging_file = os.path.join(model_dir, 'logging.txt')

model_dir = "gs://bert_summ/models/"uncased_L-12_H-768_A-12/bert_model.ckpt logging_file= "logging.txt" logger = utils.get_logger(logging_file) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer())

smry_writer = tf.summary.FileWriter(model_dir, graph=sess.graph)

if run_mode == 'train_and_evaluate': logger.info('Begin running with train_and_evaluate mode')

if tf.train.latest_checkpoint(model_dir) is not None:
    logger.info('Restore latest checkpoint in %s' % model_dir)
    saver.restore(sess, tf.train.latest_checkpoint(model_dir))

iterator.initialize_dataset(sess)

step = 5000
for epoch in range(max_train_epoch):
  iterator.restart_dataset(sess, 'train')
  step = _train_epoch(sess, epoch, step, smry_writer)

elif run_mode == 'test': logger.info('Begin running with test mode')

logger.info('Restore latest checkpoint in %s' % model_dir)
saver.restore(sess, tf.train.latest_checkpoint(model_dir))

_eval_epoch(sess, 0, mode='test')

else: raise ValueError('Unknown mode: {}'.format(runmode))

The error I am getting is:-

PermissionDeniedError Traceback (most recent call last) in 10 sess.run(tf.tables_initializer()) 11 ---> 12 smry_writer = tf.summary.FileWriter(model_dir, graph=sess.graph) 13 14 if run_mode == 'train_and_evaluate':

~/anaconda3/envs/tf-1.8/lib/python3.6/site-packages/tensorflow/python/summary/writer/writer.py in init(self, logdir, graph, max_queue, flush_secs, graph_def, filename_suffix) 350 351 event_writer = EventFileWriter(logdir, max_queue, flush_secs, --> 352 filename_suffix) 353 super(FileWriter, self).init(event_writer, graph, graph_def) 354

~/anaconda3/envs/tf-1.8/lib/python3.6/site-packages/tensorflow/python/summary/writer/event_file_writer.py in init(self, logdir, max_queue, flush_secs, filename_suffix) 65 self._logdir = logdir 66 if not gfile.IsDirectory(self._logdir): ---> 67 gfile.MakeDirs(self._logdir) 68 self._event_queue = six.moves.queue.Queue(max_queue) 69 self._ev_writer = pywrap_tensorflow.EventsWriter(

~/anaconda3/envs/tf-1.8/lib/python3.6/site-packages/tensorflow/python/lib/io/file_io.py in recursive_create_dir(dirname) 372 """ 373 with errors.raise_exception_on_not_ok_status() as status: --> 374 pywrap_tensorflow.RecursivelyCreateDir(compat.as_bytes(dirname), status) 375 376

~/anaconda3/envs/tf-1.8/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in exit(self, type_arg, value_arg, traceback_arg) 517 None, None, 518 compat.as_text(c_api.TF_Message(self.status.status)), --> 519 c_api.TF_GetCode(self.status.status)) 520 # Delete the underlying status object from memory otherwise it stays alive 521 # as there is a reference to status from this from the traceback due to

PermissionDeniedError: Error executing an HTTP request (HTTP response code 401, error code 0, error message ''), response '{ "error": { "errors": [ { "domain": "global", "reason": "required", "message": "Anonymous caller does not have storage.objects.get access to bert_summ/models/.", "locationType": "header", "location": "Authorization" } ], "code": 401, "message": "Anonymous caller does not have storage.objects.get access to bert_summ/models/." } } ' when reading metadata of gs://bert_summ/models/