Closed Elia-Belli closed 10 months ago
$$\mathbb{P}(Y=y)=\sum^\infty_{n=y}\mathbb{P}(X=n)\mathbb{P}(Y=y|X=n)=e^{-\lambda p}\cdot \frac{(\lambda p)^y}{y!}$$
$$\mathbb{P}(Z=z)=\sum^\infty_{n=z}\mathbb{P}(X=n)\mathbb{P}(Z=z|X=n)=e^{-\lambda (1-p)}\cdot \frac{(\lambda (1-p))^z}{z!}$$
Stessi calcoli dell'esercizio #81
$$= e^{-\lambda}\frac{(\lambda p)^y\cdot (\lambda (1-p))^z}{y!(y+z-y)!}=e^{-\lambda}\frac{(\lambda p)^y\cdot (\lambda (1-p))^z}{y!z!}$$
$$\mathbb{P}(Y=y)\mathbb{P}(Z=z)=e^{-\lambda p}\cdot \frac{(\lambda p)^y}{y!}\cdot e^{-\lambda (1-p)}\cdot \frac{(\lambda (1-p))^z}{z!} = e^{-\lambda} \frac{(\lambda p)^y\cdot (\lambda (1-p))^z}{y!z!}$$
$$\mathbb{P}(Y=y,Z=z)=\mathbb{P}(Y=y)\mathbb{P}(Z=z)\Rightarrow Y,Z\ indipendenti$$