Hello Seurat people
My goal is to load my Seurat object into R studio platform and run Monocle 3 for trajectory analysis.
unfortunately, I can't open my Seurat object into the R environment after Loading the Monocle3.
My knowlege is limited for controling versions in R studio.
Anyone has developed .yml file to run both Monocle3 and Seurat woriking in conda environment
Do you have any tips for olve this--- ggplot compilation issue (See below)
Need help if anyone encountered tis issue before
library(monocle3)
library(Seurat)
Error: package or namespace load failed for ‘Seurat’ in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]): namespace ‘ggplot2’ 3.2.1 is already loaded, but >= 3.3.0 is required
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-conda_cos6-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
install with following command -> conda env create -f .yml 3. then, open rstudio from monocle 3 folder and install seurat3 from install packages (CRAN)
Hello Seurat people My goal is to load my Seurat object into R studio platform and run Monocle 3 for trajectory analysis. unfortunately, I can't open my Seurat object into the R environment after Loading the Monocle3.
My knowlege is limited for controling versions in R studio.
Need help if anyone encountered tis issue before
Error: package or namespace load failed for ‘Seurat’ in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]): namespace ‘ggplot2’ 3.2.1 is already loaded, but >= 3.3.0 is required
sessionInfo() R version 3.6.1 (2019-07-05) Platform: x86_64-conda_cos6-linux-gnu (64-bit) Running under: Ubuntu 20.04 LTS
Matrix products: default BLAS/LAPACK: /home/jay/anaconda3/envs/monocle4/lib/libopenblasp-r0.3.7.so
locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=sv_SE.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=sv_SE.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=sv_SE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C
attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages: [1] lazyeval_0.2.2 monocle3_0.2.1 SingleCellExperiment_1.8.0 SummarizedExperiment_1.16.0 [5] DelayedArray_0.12.0 BiocParallel_1.20.0 matrixStats_0.55.0 GenomicRanges_1.38.0
[9] GenomeInfoDb_1.22.0 IRanges_2.20.0 S4Vectors_0.24.0 Biobase_2.46.0
[13] BiocGenerics_0.32.0
loaded via a namespace (and not attached): [1] bitops_1.0-6 fs_1.3.1 usethis_1.5.1 devtools_2.2.1 RcppAnnoy_0.0.16
[6] RColorBrewer_1.1-2 rprojroot_1.3-2 tools_3.6.1 backports_1.1.5 R6_2.4.1
[11] KernSmooth_2.23-16 colorspace_1.4-1 withr_2.1.2 tidyselect_1.0.0 gridExtra_2.3
[16] prettyunits_1.1.1 processx_3.4.1 curl_4.3 compiler_3.6.1 cli_2.0.1
[21] desc_1.2.0 scales_1.1.0 callr_3.4.1 stringr_1.4.0 digest_0.6.23
[26] XVector_0.26.0 pkgconfig_2.0.3 sessioninfo_1.1.1 rlang_0.4.4 rstudioapi_0.10
[31] dplyr_0.8.4 RCurl_1.98-1.1 magrittr_1.5 GenomeInfoDbData_1.2.2 Matrix_1.2-18
[36] Rcpp_1.0.3 munsell_0.5.0 fansi_0.4.1 viridis_0.5.1 lifecycle_0.1.0
[41] stringi_1.4.3 yaml_2.2.1 MASS_7.3-51.5 zlibbioc_1.32.0 pkgbuild_1.0.6
[46] Rtsne_0.15 plyr_1.8.5 grid_3.6.1 listenv_0.8.0 crayon_1.3.4
[51] lattice_0.20-38 splines_3.6.1 cowplot_1.0.0 knitr_1.27 ps_1.3.0
[56] pillar_1.4.3 future.apply_1.6.0 reshape2_1.4.3 codetools_0.2-16 pkgload_1.0.2
[61] glue_1.3.1 remotes_2.1.0 testthat_2.3.1 gtable_0.3.0 RANN_2.6.1
[66] purrr_0.3.3 future_1.18.0 assertthat_0.2.1 ggplot2_3.3.2 xfun_0.12
[71] survival_3.1-8 viridisLite_0.3.0 tibble_2.1.3 memoise_1.1.0 cluster_2.1.0
[76] globals_0.12.5 fitdistrplus_1.1-1 ellipsis_0.3.0 ROCR_1.0-11