Open JuRaFrDe opened 1 year ago
Hi @JuRaFrDe ,
I am unable to reproduce this. Can you paste your full code here with sessionInfo()
?
I'm having the same issue... I have taken a mouse inDrop seq dataset and succesfully imported 6 datasets with 2 different conditions into Seurat, presenting as a merged object according to the vignette. I run this code:
merged.data <- IntegrateLayers(object = merged.data, method = CCAIntegration,orig.reduction = "pca", new.reduction = "integrated.cca",verbose = TRUE)
merged.data <- FindNeighbors(merged.data, reduction = "integrated.cca", dims = 1:30)
merged.data <- FindClusters(merged.data, resolution = 2, cluster.name = "cca_clusters")
merged.data <- RunUMAP(merged.data, reduction = "integrated.cca", dims = 1:30, reduction.name = "umap.cca")
And get a lovely plot with 21 clusters, which is excellent. When I try and run the below I get:
> markers <- FindMarkers(merged.data,assay="RNA",ident.1=0)
Error in FindMarkers.StdAssay(object = data.use, slot = slot, cells.1 = cells$cells.1, :
data layers are not joined. Please run JoinLayers
So then I try JoinLayers:
> JoinLayers(merged.data)
Error in `StitchMatrix()`:
! Stitching matrices of class "data.frame" is not yet supported
Run `rlang::last_trace()` to see where the error occurred.
> rlang::last_trace(drop=FALSE)
<error/rlang_error>
Error in `StitchMatrix()`:
! Stitching matrices of class "data.frame" is not yet supported
---
Backtrace:
▆
1. ├─SeuratObject::JoinLayers(merged.data)
2. └─SeuratObject:::JoinLayers.Seurat(merged.data)
3. ├─SeuratObject::JoinLayers(...)
4. └─SeuratObject:::JoinLayers.Assay5(...)
5. └─SeuratObject:::JoinSingleLayers(...)
6. ├─SeuratObject::StitchMatrix(...)
7. └─SeuratObject:::StitchMatrix.default(...)
8. └─rlang::abort(...)
Not sure what I am doing wrong.
SessionInfo:
> sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/London
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] Azimuth_0.4.6.9004 shinyBS_0.61.1 SeuratDisk_0.0.0.9020
[4] panc8.SeuratData_3.0.2 patchwork_1.1.2 cowplot_1.1.1
[7] ifnb.SeuratData_3.1.0 SeuratData_0.2.2 Matrix_1.5-4.1
[10] dplyr_1.1.2 Seurat_4.9.9.9058 SeuratObject_4.9.9.9091
[13] sp_2.0-0
loaded via a namespace (and not attached):
[1] fs_1.6.2 ProtGenerics_1.32.0
[3] matrixStats_1.0.0 spatstat.sparse_3.0-2
[5] bitops_1.0-7 DirichletMultinomial_1.42.0
[7] devtools_2.4.5 TFBSTools_1.38.0
[9] httr_1.4.6 RColorBrewer_1.1-3
[11] profvis_0.3.8 tools_4.3.1
[13] sctransform_0.3.5 utf8_1.2.3
[15] R6_2.5.1 DT_0.28
[17] lazyeval_0.2.2 uwot_0.1.16
[19] rhdf5filters_1.12.1 urlchecker_1.0.1
[21] withr_2.5.0 prettyunits_1.1.1
[23] gridExtra_2.3 progressr_0.13.0
[25] cli_3.6.1 Biobase_2.60.0
[27] spatstat.explore_3.2-1 fastDummies_1.7.3
[29] EnsDb.Hsapiens.v86_2.99.0 shinyjs_2.1.0
[31] labeling_0.4.2 spatstat.data_3.0-1
[33] readr_2.1.4 ggridges_0.5.4
[35] pbapply_1.7-2 Rsamtools_2.16.0
[37] R.utils_2.12.2 parallelly_1.36.0
[39] sessioninfo_1.2.2 BSgenome_1.68.0
[41] RSQLite_2.3.1 generics_0.1.3
[43] BiocIO_1.10.0 gtools_3.9.4
[45] ica_1.0-3 spatstat.random_3.1-5
[47] googlesheets4_1.1.1 GO.db_3.17.0
[49] fansi_1.0.4 S4Vectors_0.38.1
[51] abind_1.4-5 R.methodsS3_1.8.2
[53] lifecycle_1.0.3 yaml_2.3.7
[55] SummarizedExperiment_1.30.2 rhdf5_2.44.0
[57] BiocFileCache_2.8.0 Rtsne_0.16
[59] grid_4.3.1 blob_1.2.4
[61] promises_1.2.0.1 shinydashboard_0.7.2
[63] crayon_1.5.2 miniUI_0.1.1.1
[65] lattice_0.21-8 annotate_1.78.0
[67] GenomicFeatures_1.52.1 KEGGREST_1.40.0
[69] pillar_1.9.0 GenomicRanges_1.52.0
[71] rjson_0.2.21 future.apply_1.11.0
[73] codetools_0.2-19 fastmatch_1.1-3
[75] leiden_0.4.3 glue_1.6.2
[77] data.table_1.14.8 remotes_2.4.2.1
[79] vctrs_0.6.3 png_0.1-8
[81] spam_2.9-1 cellranger_1.1.0
[83] poweRlaw_0.70.6 gtable_0.3.3
[85] cachem_1.0.8 Signac_1.9.0.9000
[87] S4Arrays_1.0.4 mime_0.12
[89] pracma_2.4.2 survival_3.5-5
[91] gargle_1.5.1 RcppRoll_0.3.0
[93] ellipsis_0.3.2 fitdistrplus_1.1-11
[95] ROCR_1.0-11 nlme_3.1-162
[97] usethis_2.2.2 bit64_4.0.5
[99] progress_1.2.2 filelock_1.0.2
[101] RcppAnnoy_0.0.21 GenomeInfoDb_1.36.1
[103] rprojroot_2.0.3 irlba_2.3.5.1
[105] KernSmooth_2.23-21 colorspace_2.1-0
[107] seqLogo_1.66.0 BiocGenerics_0.46.0
[109] DBI_1.1.3 tidyselect_1.2.0
[111] processx_3.8.2 bit_4.0.5
[113] compiler_4.3.1 curl_5.0.1
[115] hdf5r_1.3.8 xml2_1.3.5
[117] desc_1.4.2 DelayedArray_0.26.6
[119] plotly_4.10.2 rtracklayer_1.60.0
[121] caTools_1.18.2 scales_1.2.1
[123] lmtest_0.9-40 callr_3.7.3
[125] rappdirs_0.3.3 stringr_1.5.0
[127] digest_0.6.33 goftest_1.2-3
[129] presto_1.0.0 spatstat.utils_3.0-3
[131] XVector_0.40.0 htmltools_0.5.5
[133] pkgconfig_2.0.3 MatrixGenerics_1.12.2
[135] dbplyr_2.3.3 fastmap_1.1.1
[137] ensembldb_2.24.0 rlang_1.1.1
[139] htmlwidgets_1.6.2 shiny_1.7.4.1
[141] farver_2.1.1 zoo_1.8-12
[143] jsonlite_1.8.7 BiocParallel_1.34.2
[145] R.oo_1.25.0 RCurl_1.98-1.12
[147] magrittr_2.0.3 GenomeInfoDbData_1.2.10
[149] dotCall64_1.0-2 Rhdf5lib_1.22.0
[151] munsell_0.5.0 Rcpp_1.0.11
[153] reticulate_1.30 stringi_1.7.12
[155] zlibbioc_1.46.0 MASS_7.3-60
[157] plyr_1.8.8 pkgbuild_1.4.2
[159] parallel_4.3.1 listenv_0.9.0
[161] ggrepel_0.9.3 CNEr_1.36.0
[163] deldir_1.0-9 Biostrings_2.68.1
[165] splines_4.3.1 tensor_1.5
[167] hms_1.1.3 BSgenome.Hsapiens.UCSC.hg38_1.4.5
[169] ps_1.7.5 igraph_1.5.0
[171] spatstat.geom_3.2-4 RcppHNSW_0.4.1
[173] reshape2_1.4.4 biomaRt_2.56.1
[175] stats4_4.3.1 pkgload_1.3.2.1
[177] TFMPvalue_0.0.9 XML_3.99-0.14
[179] tzdb_0.4.0 JASPAR2020_0.99.10
[181] httpuv_1.6.11 RANN_2.6.1
[183] tidyr_1.3.0 purrr_1.0.1
[185] polyclip_1.10-4 future_1.33.0
[187] scattermore_1.2 ggplot2_3.4.2
[189] xtable_1.8-4 restfulr_0.0.15
[191] AnnotationFilter_1.24.0 RSpectra_0.16-1
[193] later_1.3.1 googledrive_2.1.1
[195] viridisLite_0.4.2 tibble_3.2.1
[197] memoise_2.0.1 AnnotationDbi_1.62.2
[199] GenomicAlignments_1.36.0 IRanges_2.34.1
[201] cluster_2.1.4 globals_0.16.2
Hi everyone,
I can also report this issue when trying to find markers for an integrated SCT v2 object. My observation is PrepSCTFindMarkers() works if the data are initially matrices, AKA I ran Read10X() followed by passing it to CreateSeuratObject(). With the same datasets, if I pre-processed the counts, read them in with read.table() and pass the data frames to CreateSeuratObject(), all individual/integration steps work as expected but PrepSCTFindMarkers() gives the same error. Not sure why the RNA assay would be influencing anything... Using R/4.2.1 and Seurat 4.9.9.9042
markers <- FindMarkers(merged.data,assay="RNA",ident.1=0) Error in FindMarkers.StdAssay(object = data.use, slot = slot, cells.1 = cells$cells.1, : data layers are not joined. Please run JoinLayers
At to markers <- FindMarkers(JoinLayers(merged.data),assay="RNA",ident.1=0)
, I revised to markers <- FindMarkers(merged.data,assay="RNA",ident.1=0)
and it worked for me. It seems that the system regard "merged.data" as separate dataset which necessitate "JoinLayers" to join these different assays together.
Hi guys,
I try to analyse a dataset which includes 7 replicates of two condition each. After running the pipeline with SCTransform(merged_seurat, vst.flavor = "v2") on my merged files and adjusting for batches using harmony I got good clustering and tried to follow up by using PrepSCTFindMarkers().
I the following issue: "Error in
StitchMatrix()
: ! Stitching matrices of class “data.frame” is not yet supported"Is this a known problem or what do I do to solve it? Thanks for your help!