Closed milani31 closed 2 months ago
Hi, I have rerun your commands but could not replicate the error. The PCA map from my end looks the same as the one from the vignette. Could you confirm that your raw data was downloaded from this link (https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz)?
In addition, if you directly load the pbmc3k from the SeuratData package, do you also see the same error?
Hi longmanz, thanks for your reply. Yes, I get the same error in both cases. I also tried with 10X data from a publication I would like to reanalyze and the same problem always seems to occur.
Hi,
I also face a similar issue when using the RunPCA
function. It returns PCs calculated based on the same gene sets as shown below:
pbmc <- RunPCA(pbmc, verbose = TRUE)
PC_ 1
Positive: CST3, FTL, BRK1, HNRNPA0, RPL23A, PPDPF, PCBP1, PTMA, FTH1, LYZ
RPLP1, MIF, LDHA, RPS24, SLC25A5, ANXA6, ABRACL, TMSB4X, S100A9, HCST
RNH1, PTPRC, GNG5, ACAP1, ISCU, HCLS1, CYBA, RPL10A, FXYD5, TIMP1
Negative: RPSAP58, CCNI, CNBP, GMFG, TSC22D3, LY6E, ANAPC16, YBX1, CD99, EEF1B2
ATP5B, DRAP1, SRGN, ALDOA, ISG15, GPSM3, PSME1, TOMM7, BTF3, ISG20
BTG1, RPSA, NBEAL1, HSPA8, SRSF5, GIMAP7, UBL5, PARK7, MT2A, SH3BGRL3
PC_ 2
Positive: FTL, BRK1, CST3, HNRNPA0, PCBP1, RPL23A, PPDPF, PTMA, FTH1, LYZ
MIF, LDHA, RPLP1, SLC25A5, RPS24, ANXA6, TMSB4X, HCST, ABRACL, S100A9
RNH1, PTPRC, GNG5, CYBA, ACAP1, HCLS1, ISCU, TIMP1, RPL10A, FXYD5
Negative: RPSAP58, CCNI, CNBP, GMFG, TSC22D3, LY6E, ANAPC16, YBX1, CD99, ATP5B
EEF1B2, DRAP1, ALDOA, SRGN, ISG15, GPSM3, BTF3, TOMM7, PSME1, ISG20
RPSA, BTG1, HSPA8, SRSF5, NBEAL1, GIMAP7, PARK7, UBL5, MT2A, SH3BGRL3
PC_ 3
Positive: CST3, BRK1, FTL, HNRNPA0, PPDPF, RPL23A, PCBP1, PTMA, FTH1, LYZ
RPLP1, MIF, LDHA, RPS24, ANXA6, SLC25A5, ABRACL, S100A9, TMSB4X, HCST
RNH1, GNG5, PTPRC, ACAP1, ISCU, HCLS1, CYBA, RPL10A, S100A10, FXYD5
Negative: RPSAP58, CCNI, CNBP, TSC22D3, GMFG, LY6E, ANAPC16, YBX1, EEF1B2, CD99
ATP5B, DRAP1, ISG15, SRGN, ALDOA, GPSM3, PSME1, TOMM7, BTG1, BTF3
ISG20, NBEAL1, RPSA, HSPA8, GIMAP7, SRSF5, UBL5, MT2A, PARK7, U2AF1
PC_ 4
Positive: CST3, FTL, BRK1, HNRNPA0, RPL23A, PPDPF, PCBP1, PTMA, FTH1, LYZ
RPLP1, MIF, LDHA, RPS24, SLC25A5, ANXA6, ABRACL, TMSB4X, S100A9, HCST
RNH1, GNG5, PTPRC, ACAP1, ISCU, HCLS1, CYBA, RPL10A, FXYD5, TIMP1
Negative: RPSAP58, CCNI, CNBP, GMFG, TSC22D3, LY6E, ANAPC16, YBX1, CD99, EEF1B2
ATP5B, DRAP1, SRGN, ALDOA, ISG15, GPSM3, PSME1, TOMM7, BTF3, ISG20
BTG1, RPSA, NBEAL1, HSPA8, SRSF5, GIMAP7, UBL5, PARK7, MT2A, SH3BGRL3
PC_ 5
Positive: FTL, BRK1, CST3, HNRNPA0, PCBP1, RPL23A, PPDPF, PTMA, FTH1, LYZ
MIF, RPLP1, LDHA, SLC25A5, RPS24, ANXA6, TMSB4X, ABRACL, HCST, S100A9
RNH1, PTPRC, GNG5, ACAP1, CYBA, HCLS1, ISCU, RPL10A, TIMP1, FXYD5
Negative: RPSAP58, CCNI, CNBP, GMFG, TSC22D3, LY6E, ANAPC16, YBX1, CD99, EEF1B2
ATP5B, DRAP1, ALDOA, SRGN, ISG15, GPSM3, TOMM7, PSME1, BTF3, ISG20
RPSA, BTG1, HSPA8, SRSF5, NBEAL1, GIMAP7, UBL5, PARK7, MT2A, SH3BGRL3
After this, when I run the UMAP function, I get the error:
Error in x2set(Xsub, n_neighbors, metric, nn_method = nn_sub, n_trees, : Non-finite entries in the input matrix
tried reinstalling R and RStudio, and also tried with different datasets, but still encounter the same issue.
SESSION INFO:
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Europe
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] RColorBrewer_1.1-3 patchwork_1.2.0 dplyr_1.1.4 sctransform_0.4.1 ggplot2_3.5.1 Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4
loaded via a namespace (and not attached):
[1] jsonlite_1.8.8 magrittr_2.0.3 spatstat.utils_3.0-5 farver_2.1.2 zlibbioc_1.50.0
[6] vctrs_0.6.5 ROCR_1.0-11 DelayedMatrixStats_1.26.0 memoise_2.0.1 spatstat.explore_3.2-7
[11] S4Arrays_1.4.1 htmltools_0.5.8.1 SparseArray_1.4.8 parallelly_1.37.1 KernSmooth_2.23-24
[16] htmlwidgets_1.6.4 ica_1.0-3 plyr_1.8.9 plotly_4.10.4 zoo_1.8-12
[21] cachem_1.1.0 igraph_2.0.3 mime_0.12 lifecycle_1.0.4 pkgconfig_2.0.3
[26] Matrix_1.6-5 R6_2.5.1 fastmap_1.2.0 MatrixGenerics_1.16.0 GenomeInfoDbData_1.2.12
[31] fitdistrplus_1.1-11 future_1.33.2 shiny_1.8.1.1 digest_0.6.35 colorspace_2.1-0
[36] AnnotationDbi_1.66.0 S4Vectors_0.42.0 tensor_1.5 RSpectra_0.16-1 irlba_2.3.5.1
[41] GenomicRanges_1.56.1 RSQLite_2.3.7 labeling_0.4.3 progressr_0.14.0 fansi_1.0.6
[46] spatstat.sparse_3.0-3 httr_1.4.7 polyclip_1.10-6 abind_1.4-5 compiler_4.4.1
[51] bit64_4.0.5 withr_3.0.0 DBI_1.2.3 fastDummies_1.7.3 R.utils_2.12.3
[56] MASS_7.3-60 DelayedArray_0.30.1 tools_4.4.1 lmtest_0.9-40 httpuv_1.6.15
[61] future.apply_1.11.2 goftest_1.2-3 glmGamPoi_1.16.0 R.oo_1.26.0 glue_1.7.0
[66] nlme_3.1-165 promises_1.3.0 grid_4.4.1 Rtsne_0.17 cluster_2.1.6
[71] reshape2_1.4.4 generics_0.1.3 gtable_0.3.5 spatstat.data_3.0-4 R.methodsS3_1.8.2
[76] tidyr_1.3.1 data.table_1.15.4 utf8_1.2.4 XVector_0.44.0 BiocGenerics_0.50.0
[81] spatstat.geom_3.2-9 RcppAnnoy_0.0.22 ggrepel_0.9.5 RANN_2.6.1 pillar_1.9.0
[86] stringr_1.5.1 spam_2.10-0 RcppHNSW_0.6.0 later_1.3.2 splines_4.4.1
[91] lattice_0.22-5 survival_3.7-0 bit_4.0.5 deldir_2.0-4 tidyselect_1.2.1
[96] Biostrings_2.72.1 miniUI_0.1.1.1 pbapply_1.7-2 gridExtra_2.3 IRanges_2.38.0
[101] SummarizedExperiment_1.34.0 scattermore_1.2 stats4_4.4.1 Biobase_2.64.0 matrixStats_1.3.0
[106] stringi_1.8.4 UCSC.utils_1.0.0 lazyeval_0.2.2 codetools_0.2-19 tibble_3.2.1
[111] cli_3.6.2 uwot_0.2.2 xtable_1.8-4 reticulate_1.37.0 munsell_0.5.1
[116] Rcpp_1.0.12 GenomeInfoDb_1.40.1 globals_0.16.3 spatstat.random_3.2-3 png_0.1-8
[121] parallel_4.4.1 blob_1.2.4 dotCall64_1.1-1 sparseMatrixStats_1.16.0 listenv_0.9.1
[126] viridisLite_0.4.2 scales_1.3.0 ggridges_0.5.6 leiden_0.4.3.1 purrr_1.0.2
[131] crayon_1.5.2 rlang_1.1.4 cowplot_1.1.3 KEGGREST_1.44.0
Could the authors please clarify this as soon as possible?
Hi, turns out that the system libraries blas und lapack were causing problems for some R packages on my linux computer, including Seurat and DESeq2. In case some of you are facing the same problem as described above, get in touch with the IT to look into it and that will hopefully save you a lot of time and energy.
Dear Seurat Team, thank you for developing this amazing tool!
I am completely new to R and RNA-seq analysis and especially scRNA analysis. I am trying to reproduce the steps of the PBMC 3K guided tutorial and encountered some issues while running it. My R version, RStudio, as well as all the packages are freshly installed with the latest versions (Seurat 5.1.0, SeuratObject 5.0.2). The pbmc3k dataset was downloaded from the link in the tutorial. The code is diplayed below.
When examining the PCA results, they are very different from what is expected. What concerns me most is the Dimensional reduction plot showing high exponential values on the x and y axis (see image).
PC 1 Positive: GZMK, NCR3, VPS13C, TMSB4X, MT-CO2 Negative: SELL, IGFBP7, PSMC6, LIG1, ARRDC3 PC 2 Positive: GZMK, NCR3, VPS13C, TMSB4X, MT-CO2 Negative: SELL, IGFBP7, PSMC6, LIG1, ARRDC3 PC 3 Positive: SELL, IGFBP7, PSMC6, LIG1, GPKOW Negative: GZMK, NCR3, VPS13C, TMSB4X, MT-CO2 PC 4 Positive: GZMK, NCR3, VPS13C, TMSB4X, KLRG1 Negative: SELL, IGFBP7, PSMC6, LIG1, GPKOW PC_ 5 Positive: PSMC6, SELL, IGFBP7, ARRDC3, GNB2 Negative: GZMK, NCR3, VPS13C, MT-CO2, ITSN2
From this point on it is not possible to continue further analysis steps. The error appearing after trying to run UMAP hints that infinite values somehow are inside the input matrix but I honestly have no clue how or when this could have happened.
pbmc <- RunUMAP(pbmc, dims = 1:10)
Error in x2set(Xsub, n_neighbors, metric, nn_method = nn_sub, n_trees, : Non-finite entries in the input matrix
However, when setting npcs = 25 in the RunPCA function the results are comparable the the tutorial output, even the Dimensional reduction plot.
PC 1 Positive: CST3, TYROBP, LST1, AIF1, FTL Negative: MALAT1, LTB, IL32, IL7R, CD2 PC 2 Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 Negative: NKG7, PRF1, CST7, GZMB, GZMA PC 3 Positive: PPBP, PF4, SDPR, SPARC, GNG11 Negative: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 PC 4 Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 Negative: VIM, IL7R, S100A6, IL32, S100A8 PC_ 5 Positive: LTB, IL7R, CKB, VIM, MS4A7 Negative: GZMB, NKG7, S100A8, FGFBP2, GNLY
I already downgraded to Seurat version 4.4.0 and SeuratObject version 4.1.4 but I still get the same problem. I also used other datasets and used SCTransform and even reinstalled R. I tried to find a solution online where that issue was mentioned somehow but there was no explanation what could be causing this and how to fix this. I would be very grateful for any suggestions.
Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale: [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8 LC_COLLATE=en_GB.UTF-8 LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/Berlin tzcode source: system (glibc)
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages: [1] ggplot2_3.5.1 patchwork_1.2.0 Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4
loaded via a namespace (and not attached): [1] deldir_2.0-4 pbapply_1.7-2 gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 RcppAnnoy_0.0.22 matrixStats_1.3.0
[8] ggridges_0.5.6 compiler_4.4.0 spatstat.geom_3.2-9 png_0.1-8 vctrs_0.6.5 reshape2_1.4.4 stringr_1.5.1
[15] pkgconfig_2.0.3 fastmap_1.1.1 labeling_0.4.3 utf8_1.2.4 promises_1.3.0 purrr_1.0.2 jsonlite_1.8.8
[22] goftest_1.2-3 later_1.3.2 spatstat.utils_3.0-4 irlba_2.3.5.1 parallel_4.4.0 cluster_2.1.6 R6_2.5.1
[29] ica_1.0-3 stringi_1.8.4 RColorBrewer_1.1-3 spatstat.data_3.0-4 reticulate_1.36.1 parallelly_1.37.1 lmtest_0.9-40
[36] scattermore_1.2 Rcpp_1.0.12 tensor_1.5 future.apply_1.11.2 zoo_1.8-12 R.utils_2.12.3 sctransform_0.4.1
[43] httpuv_1.6.15 Matrix_1.6-5 splines_4.4.0 igraph_2.0.3 tidyselect_1.2.1 rstudioapi_0.16.0 abind_1.4-5
[50] spatstat.random_3.2-3 codetools_0.2-19 miniUI_0.1.1.1 spatstat.explore_3.2-7 listenv_0.9.1 lattice_0.22-5 tibble_3.2.1
[57] plyr_1.8.9 withr_3.0.0 shiny_1.8.1.1 ROCR_1.0-11 Rtsne_0.17 future_1.33.2 fastDummies_1.7.3
[64] survival_3.5-8 polyclip_1.10-6 fitdistrplus_1.1-11 pillar_1.9.0 KernSmooth_2.23-22 plotly_4.10.4 generics_0.1.3
[71] RcppHNSW_0.6.0 munsell_0.5.1 scales_1.3.0 globals_0.16.3 xtable_1.8-4 glue_1.7.0 lazyeval_0.2.2
[78] tools_4.4.0 data.table_1.15.4 RSpectra_0.16-1 RANN_2.6.1 leiden_0.4.3.1 dotCall64_1.1-1 cowplot_1.1.3
[85] grid_4.4.0 tidyr_1.3.1 colorspace_2.1-0 nlme_3.1-163 cli_3.6.2 spatstat.sparse_3.0-3 spam_2.10-0
[92] fansi_1.0.6 viridisLite_0.4.2 dplyr_1.1.4 uwot_0.2.2 gtable_0.3.5 R.methodsS3_1.8.2 digest_0.6.35
[99] progressr_0.14.0 ggrepel_0.9.5 farver_2.1.1 htmlwidgets_1.6.4 R.oo_1.26.0 htmltools_0.5.8.1 lifecycle_1.0.4
[106] httr_1.4.7 mime_0.12 MASS_7.3-60.0.1