Closed renovate[bot] closed 2 months ago
This PR contains the following updates:
2.1.0
2.1.1
8.3.2
8.3.3
📅 Schedule: Branch creation - "after 5pm on the first day of the month" in timezone Europe/Zurich, Automerge - At any time (no schedule defined).
🚦 Automerge: Enabled.
♻ Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.
This PR was generated by Mend Renovate. View the repository job log.
This PR contains the following updates:
2.1.0
->2.1.1
8.3.2
->8.3.3
Release Notes
numpy/numpy (numpy)
### [`v2.1.1`](https://redirect.github.com/numpy/numpy/releases/tag/v2.1.1): 2.1.1 (Sep 3, 2024) [Compare Source](https://redirect.github.com/numpy/numpy/compare/v2.1.0...v2.1.1) ##### NumPy 2.1.1 Release Notes NumPy 2.1.1 is a maintenance release that fixes bugs and regressions discovered after the 2.1.0 release. The Python versions supported by this release are 3.10-3.13. ##### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Charles Harris - Mateusz Sokół - Maximilian Weigand + - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg ##### Pull requests merged A total of 10 pull requests were merged for this release. - [#27236](https://redirect.github.com/numpy/numpy/pull/27236): REL: Prepare for the NumPy 2.1.0 release \[wheel build] - [#27252](https://redirect.github.com/numpy/numpy/pull/27252): MAINT: prepare 2.1.x for further development - [#27259](https://redirect.github.com/numpy/numpy/pull/27259): BUG: revert unintended change in the return value of set_printoptions - [#27266](https://redirect.github.com/numpy/numpy/pull/27266): BUG: fix reference counting bug in \__array_interface\_\_ implementation... - [#27267](https://redirect.github.com/numpy/numpy/pull/27267): TST: Add regression test for missing descr in array-interface - [#27276](https://redirect.github.com/numpy/numpy/pull/27276): BUG: Fix [#27256](https://redirect.github.com/numpy/numpy/issues/27256) and [#27257](https://redirect.github.com/numpy/numpy/issues/27257) - [#27278](https://redirect.github.com/numpy/numpy/pull/27278): BUG: Fix array_equal for numeric and non-numeric scalar types - [#27287](https://redirect.github.com/numpy/numpy/pull/27287): MAINT: Update maintenance/2.1.x after the 2.0.2 release - [#27303](https://redirect.github.com/numpy/numpy/pull/27303): BLD: cp311- macosx_arm64 wheels \[wheel build] - [#27304](https://redirect.github.com/numpy/numpy/pull/27304): BUG: f2py: better handle filtering of public/private subroutines ##### Checksums ##### MD5 3053a97400db800b7377749e691eb39e numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl 84b752a2220dce7c96ff89eef4f4aec3 numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl 47ed4f704a64261f07ca24ef2e674524 numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl b8a45caa870aee980c298053cf064d28 numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl e097ad5eee572b791b4a25eedad6df4a numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ae502c99315884cda7f0236a07c035c4 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 841a859d975c55090c0b60b72aab93a3 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl d51be2b17f5b87aac64ab80fdfafc85e numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl 1f8249bd725397c6233fe6a0e8ad18b1 numpy-2.1.1-cp310-cp310-win32.whl d38d6f06589c1ec104a6a31ff6035781 numpy-2.1.1-cp310-cp310-win_amd64.whl 6a18fe3029aae00986975250313bf16f numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl 5b0b3aa01fbd0b5a8b0f354bb878351e numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl 1c492dad399abe7b97274b4c6c12ae53 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl 4d55d91e71b62eb5fa6561c606524f60 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl 88e99ecd063c178f25bc08d20792a9bf numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f3c8b0e4fb059b9219e8ec86d9fda861 numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df632b5fed7eb78d39e7194d2475c19b numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl 65499daccdb178d26e322d9f359cf146 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl eb97327fd7aa6027e2409d0dcca1129a numpy-2.1.1-cp311-cp311-win32.whl 9e4b05b38cbff22c2bdfead528b9d2bc numpy-2.1.1-cp311-cp311-win_amd64.whl 6b8a359bb865b5c624fd9ffc848393e1 numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl eaf8dce312efa2b0f17ad46612fb1681 numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl c861ff048b336284fe7c0791b1a6b0b4 numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl 7e1befccfe729dc5d6c450a5fb6b801c numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl ea0a401ef653a167221987a10cbef260 numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 97326ac792d26f2e536a519c82f2d6bc numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fdd2a82232c03d11bbc7cec0a8e01ab0 numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl 0d6716e9a7b2c0d6e5ace9c01b9bca01 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl ba589ed2a79c88187c3b8574ae72a1c7 numpy-2.1.1-cp312-cp312-win32.whl 806ca7c1e2a2013b786edbb619f6da47 numpy-2.1.1-cp312-cp312-win_amd64.whl 647665353e5af5884df4e51610990c22 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl bfd3b3c5c4616ef99d917bd94d39114a numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl cb989095f9c74e3b32250a984390faeb numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl 55ad7548e58f61b9a4f91749e36d237f numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl 5bc73d67dd1032524bfd36ef877b09e4 numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c7dfb09db8284cb75296f708c3f77ea3 numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7cf90ce1b844a97aeea1a5b8c71fb49b numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl 6ec8baeac5f979a3b98017679d457bbc numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl 1f198cb5210c76faae81359a83d58230 numpy-2.1.1-cp313-cp313-win32.whl 1766258213ad41f7e36f2209ee6d2a30 numpy-2.1.1-cp313-cp313-win_amd64.whl f0a7a0456308dbeb739ad886f1632f16 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl 302c9cf7b4aa695974500ee1935a92c9 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl f4aa7d784992abb9bd9fe9db09c01c06 numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl 3bb4ae9906499609769f1774438149a5 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl ff6b9e1993d3d540074736014b1d13af numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 749489c091ee9c00abf1ad1ef822c3ca numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 32d2daf4064031f365ced5036757ad8b numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl 603dfe4ef56c01e1fc0dcc9d5e3090ed numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl 70fa2d3b78633bb6061c90e17364f27f numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 9a430be5d14b689ed051eccc540dfbdc numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 7291ff124e471d32c03464da18ff108d numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e56ce141724af119c7c647a8705827a5 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl f63b4750618bfa5490f10cae37fde998 numpy-2.1.1.tar.gz ##### SHA256 c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9 numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl 7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl 5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl 59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl 13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7 numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl 57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647 numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl 9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728 numpy-2.1.1-cp310-cp310-win32.whl d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae numpy-2.1.1-cp310-cp310-win_amd64.whl 0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550 numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl 0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl 24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl 397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d numpy-2.1.1-cp311-cp311-win32.whl ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e numpy-2.1.1-cp311-cp311-win_amd64.whl 7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl 6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl 3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521 numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201 numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl 8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl 950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed numpy-2.1.1-cp312-cp312-win32.whl 3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270 numpy-2.1.1-cp312-cp312-win_amd64.whl 046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl 6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5 numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136 numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl 8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0 numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl 981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78 numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556 numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl 251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b numpy-2.1.1-cp313-cp313-win32.whl f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0 numpy-2.1.1-cp313-cp313-win_amd64.whl 920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl 53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl 7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5 numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504 numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd numpy-2.1.1.tar.gzpytest-dev/pytest (pytest)
### [`v8.3.3`](https://redirect.github.com/pytest-dev/pytest/releases/tag/8.3.3) [Compare Source](https://redirect.github.com/pytest-dev/pytest/compare/8.3.2...8.3.3) # pytest 8.3.3 (2024-09-09) ## Bug fixes - [#12446](https://redirect.github.com/pytest-dev/pytest/issues/12446): Avoid calling `@property` (and other instance descriptors) during fixture discovery -- by `asottile`{.interpreted-text role="user"} - [#12659](https://redirect.github.com/pytest-dev/pytest/issues/12659): Fixed the issue of not displaying assertion failure differences when using the parameter `--import-mode=importlib` in pytest>=8.1. - [#12667](https://redirect.github.com/pytest-dev/pytest/issues/12667): Fixed a regression where type change in \[ExceptionInfo.errisinstance]{.title-ref} caused \[mypy]{.title-ref} to fail. - [#12744](https://redirect.github.com/pytest-dev/pytest/issues/12744): Fixed typing compatibility with Python 3.9 or less -- replaced \[typing.Self]{.title-ref} with \[typing_extensions.Self]{.title-ref} -- by `Avasam`{.interpreted-text role="user"} - [#12745](https://redirect.github.com/pytest-dev/pytest/issues/12745): Fixed an issue with backslashes being incorrectly converted in nodeid paths on Windows, ensuring consistent path handling across environments. - [#6682](https://redirect.github.com/pytest-dev/pytest/issues/6682): Fixed bug where the verbosity levels where not being respected when printing the "msg" part of failed assertion (as in `assert condition, msg`). - [#9422](https://redirect.github.com/pytest-dev/pytest/issues/9422): Fix bug where disabling the terminal plugin via `-p no:terminal` would cause crashes related to missing the `verbose` option. \-- by `GTowers1`{.interpreted-text role="user"} ## Improved documentation - [#12663](https://redirect.github.com/pytest-dev/pytest/issues/12663): Clarify that the \[pytest_deselected]{.title-ref} hook should be called from \[pytest_collection_modifyitems]{.title-ref} hook implementations when items are deselected. - [#12678](https://redirect.github.com/pytest-dev/pytest/issues/12678): Remove erroneous quotes from \[tmp_path_retention_policy]{.title-ref} example in docs. ## Miscellaneous internal changes - [#12769](https://redirect.github.com/pytest-dev/pytest/issues/12769): Fix typos discovered by codespell and add codespell to pre-commit hooks.Configuration
📅 Schedule: Branch creation - "after 5pm on the first day of the month" in timezone Europe/Zurich, Automerge - At any time (no schedule defined).
🚦 Automerge: Enabled.
♻ Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.
This PR was generated by Mend Renovate. View the repository job log.