Closed giorgiosironi closed 8 months ago
The DataCite REST API appears extremely slow at the time of writing:
$ time curl https://api.datacite.org/dois/10.48550/arXiv.2202.07378
{"data":{"id":"10.48550/arxiv.2202.07378","type":"dois","attributes":{"doi":"10.48550/arxiv.2202.07378","prefix":"10.48550","suffix":"arxiv.2202.07378","identifiers":[{"identifier":"2202.07378","identifierType":"arXiv"}],"alternateIdentifiers":[{"alternateIdentifierType":"arXiv","alternateIdentifier":"2202.07378"}],"creators":[{"name":"Hellmuth, Kathrin","nameType":"Personal","givenName":"Kathrin","familyName":"Hellmuth","affiliation":[],"nameIdentifiers":[]},{"name":"Klingenberg, Christian","nameType":"Personal","givenName":"Christian","familyName":"Klingenberg","affiliation":[],"nameIdentifiers":[]}],"titles":[{"title":"Computing Black Scholes with Uncertain Volatility-A Machine Learning Approach"}],"publisher":"arXiv","container":{},"publicationYear":2022,"subjects":[{"lang":"en","subject":"Mathematical Finance (q-fin.MF)","subjectScheme":"arXiv"},{"lang":"en","subject":"Computational Finance (q-fin.CP)","subjectScheme":"arXiv"},{"subject":"FOS: Economics and business","subjectScheme":"Fields of Science and Technology (FOS)"},{"subject":"FOS: Economics and business","schemeUri":"http://www.oecd.org/science/inno/38235147.pdf","subjectScheme":"Fields of Science and Technology (FOS)"},{"lang":"en","subject":"65N35, 65N75, 91G60, 91G80","subjectScheme":"MSC"}],"contributors":[],"dates":[{"date":"2022-02-15T13:07:08Z","dateType":"Submitted","dateInformation":"v1"},{"date":"2024-01-11T01:38:15Z","dateType":"Updated","dateInformation":"v1"},{"date":"2022-02","dateType":"Available","dateInformation":"v1"},{"date":"2022","dateType":"Issued"}],"language":null,"types":{"ris":"RPRT","bibtex":"article","citeproc":"article-journal","schemaOrg":"ScholarlyArticle","resourceType":"Article","resourceTypeGeneral":"Text"},"relatedIdentifiers":[{"relationType":"IsVersionOf","relatedIdentifier":"10.3390/math10030489","relatedIdentifierType":"DOI"}],"relatedItems":[],"sizes":[],"formats":[],"version":"1","rightsList":[{"rights":"Creative Commons Attribution Share Alike 4.0 International","rightsUri":"https://creativecommons.org/licenses/by-sa/4.0/legalcode","schemeUri":"https://spdx.org/licenses/","rightsIdentifier":"cc-by-sa-4.0","rightsIdentifierScheme":"SPDX"}],"descriptions":[{"description":"In financial mathematics, it is a typical approach to approximate financial markets operating in discrete time by continuous-time models such as the Black Scholes model. Fitting this model gives rise to difficulties due to the discrete nature of market data. We thus model the pricing process of financial derivatives by the Black Scholes equation, where the volatility is a function of a finite number of random variables. This reflects an influence of uncertain factors when determining volatility. The aim is to quantify the effect of this uncertainty when computing the price of derivatives. Our underlying method is the generalized Polynomial Chaos (gPC) method in order to numerically compute the uncertainty of the solution by the stochastic Galerkin approach and a finite difference method. We present an efficient numerical variation of this method, which is based on a machine learning technique, the so-called Bi-Fidelity approach. This is illustrated with numerical examples.","descriptionType":"Abstract"}],"geoLocations":[],"fundingReferences":[],"xml":"PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiPz4KPHJlc291cmNlIHhtbG5zPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCIgeG1sbnM6eHNpPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZSIgeHNpOnNjaGVtYUxvY2F0aW9uPSJodHRwOi8vZGF0YWNpdGUub3JnL3NjaGVtYS9rZXJuZWwtNCBodHRwOi8vc2NoZW1hLmRhdGFjaXRlLm9yZy9tZXRhL2tlcm5lbC00LjMvbWV0YWRhdGEueHNkIj4KICA8aWRlbnRpZmllciBpZGVudGlmaWVyVHlwZT0iRE9JIj4xMC40ODU1MC9BUlhJVi4yMjAyLjA3Mzc4PC9pZGVudGlmaWVyPgogIDxhbHRlcm5hdGVJZGVudGlmaWVycz4KICAgIDxhbHRlcm5hdGVJZGVudGlmaWVyIGFsdGVybmF0ZUlkZW50aWZpZXJUeXBlPSJhclhpdiI+MjIwMi4wNzM3ODwvYWx0ZXJuYXRlSWRlbnRpZmllcj4KICA8L2FsdGVybmF0ZUlkZW50aWZpZXJzPgogIDxjcmVhdG9ycz4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5IZWxsbXV0aCwgS2F0aHJpbjwvY3JlYXRvck5hbWU+CiAgICAgIDxnaXZlbk5hbWU+S2F0aHJpbjwvZ2l2ZW5OYW1lPgogICAgICA8ZmFtaWx5TmFtZT5IZWxsbXV0aDwvZmFtaWx5TmFtZT4KICAgIDwvY3JlYXRvcj4KICAgIDxjcmVhdG9yPgogICAgICA8Y3JlYXRvck5hbWUgbmFtZVR5cGU9IlBlcnNvbmFsIj5LbGluZ2VuYmVyZywgQ2hyaXN0aWFuPC9jcmVhdG9yTmFtZT4KICAgICAgPGdpdmVuTmFtZT5DaHJpc3RpYW48L2dpdmVuTmFtZT4KICAgICAgPGZhbWlseU5hbWU+S2xpbmdlbmJlcmc8L2ZhbWlseU5hbWU+CiAgICA8L2NyZWF0b3I+CiAgPC9jcmVhdG9ycz4KICA8dGl0bGVzPgogICAgPHRpdGxlPkNvbXB1dGluZyBCbGFjayBTY2hvbGVzIHdpdGggVW5jZXJ0YWluIFZvbGF0aWxpdHktQSBNYWNoaW5lIExlYXJuaW5nIEFwcHJvYWNoPC90aXRsZT4KICA8L3RpdGxlcz4KICA8cHVibGlzaGVyPmFyWGl2PC9wdWJsaXNoZXI+CiAgPHB1YmxpY2F0aW9uWWVhcj4yMDIyPC9wdWJsaWNhdGlvblllYXI+CiAgPHN1YmplY3RzPgogICAgPHN1YmplY3QgeG1sOmxhbmc9ImVuIiBzdWJqZWN0U2NoZW1lPSJhclhpdiI+TWF0aGVtYXRpY2FsIEZpbmFuY2UgKHEtZmluLk1GKTwvc3ViamVjdD4KICAgIDxzdWJqZWN0IHhtbDpsYW5nPSJlbiIgc3ViamVjdFNjaGVtZT0iYXJYaXYiPkNvbXB1dGF0aW9uYWwgRmluYW5jZSAocS1maW4uQ1ApPC9zdWJqZWN0PgogICAgPHN1YmplY3Qgc3ViamVjdFNjaGVtZT0iRmllbGRzIG9mIFNjaWVuY2UgYW5kIFRlY2hub2xvZ3kgKEZPUykiPkZPUzogRWNvbm9taWNzIGFuZCBidXNpbmVzczwvc3ViamVjdD4KICAgIDxzdWJqZWN0IHhtbDpsYW5nPSJlbiIgc3ViamVjdFNjaGVtZT0iTVNDIj42NU4zNSwgNjVONzUsIDkxRzYwLCA5MUc4MDwvc3ViamVjdD4KICA8L3N1YmplY3RzPgogIDxkYXRlcz4KICAgIDxkYXRlIGRhdGVUeXBlPSJTdWJtaXR0ZWQiIGRhdGVJbmZvcm1hdGlvbj0idjEiPjIwMjItMDItMTVUMTM6MDc6MDhaPC9kYXRlPgogICAgPGRhdGUgZGF0ZVR5cGU9IlVwZGF0ZWQiIGRhdGVJbmZvcm1hdGlvbj0idjEiPjIwMjQtMDEtMTFUMDE6Mzg6MTVaPC9kYXRlPgogICAgPGRhdGUgZGF0ZVR5cGU9IkF2YWlsYWJsZSIgZGF0ZUluZm9ybWF0aW9uPSJ2MSI+MjAyMi0wMjwvZGF0ZT4KICA8L2RhdGVzPgogIDxyZXNvdXJjZVR5cGUgcmVzb3VyY2VUeXBlR2VuZXJhbD0iVGV4dCI+QXJ0aWNsZTwvcmVzb3VyY2VUeXBlPgogIDxyZWxhdGVkSWRlbnRpZmllcnM+CiAgICA8cmVsYXRlZElkZW50aWZpZXIgcmVsYXRlZElkZW50aWZpZXJUeXBlPSJET0kiIHJlbGF0aW9uVHlwZT0iSXNWZXJzaW9uT2YiPjEwLjMzOTAvbWF0aDEwMDMwNDg5PC9yZWxhdGVkSWRlbnRpZmllcj4KICA8L3JlbGF0ZWRJZGVudGlmaWVycz4KICA8dmVyc2lvbj4xPC92ZXJzaW9uPgogIDxyaWdodHNMaXN0PgogICAgPHJpZ2h0cyByaWdodHNVUkk9Imh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LXNhLzQuMC8iIHJpZ2h0c0lkZW50aWZpZXJTY2hlbWU9IlNQRFgiIHJpZ2h0c0lkZW50aWZpZXI9IkNDLUJZLVNBLTQuMCI+Q3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbiBTaGFyZSBBbGlrZSA0LjAgSW50ZXJuYXRpb25hbDwvcmlnaHRzPgogIDwvcmlnaHRzTGlzdD4KICA8ZGVzY3JpcHRpb25zPgogICAgPGRlc2NyaXB0aW9uIGRlc2NyaXB0aW9uVHlwZT0iQWJzdHJhY3QiPkluIGZpbmFuY2lhbCBtYXRoZW1hdGljcywgaXQgaXMgYSB0eXBpY2FsIGFwcHJvYWNoIHRvIGFwcHJveGltYXRlIGZpbmFuY2lhbCBtYXJrZXRzIG9wZXJhdGluZyBpbiBkaXNjcmV0ZSB0aW1lIGJ5IGNvbnRpbnVvdXMtdGltZSBtb2RlbHMgc3VjaCBhcyB0aGUgQmxhY2sgU2Nob2xlcyBtb2RlbC4gRml0dGluZyB0aGlzIG1vZGVsIGdpdmVzIHJpc2UgdG8gZGlmZmljdWx0aWVzIGR1ZSB0byB0aGUgZGlzY3JldGUgbmF0dXJlIG9mIG1hcmtldCBkYXRhLiBXZSB0aHVzIG1vZGVsIHRoZSBwcmljaW5nIHByb2Nlc3Mgb2YgZmluYW5jaWFsIGRlcml2YXRpdmVzIGJ5IHRoZSBCbGFjayBTY2hvbGVzIGVxdWF0aW9uLCB3aGVyZSB0aGUgdm9sYXRpbGl0eSBpcyBhIGZ1bmN0aW9uIG9mIGEgZmluaXRlIG51bWJlciBvZiByYW5kb20gdmFyaWFibGVzLiBUaGlzIHJlZmxlY3RzIGFuIGluZmx1ZW5jZSBvZiB1bmNlcnRhaW4gZmFjdG9ycyB3aGVuIGRldGVybWluaW5nIHZvbGF0aWxpdHkuIFRoZSBhaW0gaXMgdG8gcXVhbnRpZnkgdGhlIGVmZmVjdCBvZiB0aGlzIHVuY2VydGFpbnR5IHdoZW4gY29tcHV0aW5nIHRoZSBwcmljZSBvZiBkZXJpdmF0aXZlcy4gT3VyIHVuZGVybHlpbmcgbWV0aG9kIGlzIHRoZSBnZW5lcmFsaXplZCBQb2x5bm9taWFsIENoYW9zIChnUEMpIG1ldGhvZCBpbiBvcmRlciB0byBudW1lcmljYWxseSBjb21wdXRlIHRoZSB1bmNlcnRhaW50eSBvZiB0aGUgc29sdXRpb24gYnkgdGhlIHN0b2NoYXN0aWMgR2FsZXJraW4gYXBwcm9hY2ggYW5kIGEgZmluaXRlIGRpZmZlcmVuY2UgbWV0aG9kLiBXZSBwcmVzZW50IGFuIGVmZmljaWVudCBudW1lcmljYWwgdmFyaWF0aW9uIG9mIHRoaXMgbWV0aG9kLCB3aGljaCBpcyBiYXNlZCBvbiBhIG1hY2hpbmUgbGVhcm5pbmcgdGVjaG5pcXVlLCB0aGUgc28tY2FsbGVkIEJpLUZpZGVsaXR5IGFwcHJvYWNoLiBUaGlzIGlzIGlsbHVzdHJhdGVkIHdpdGggbnVtZXJpY2FsIGV4YW1wbGVzLjwvZGVzY3JpcHRpb24+CiAgPC9kZXNjcmlwdGlvbnM+CjwvcmVzb3VyY2U+","url":"https://arxiv.org/abs/2202.07378","contentUrl":null,"metadataVersion":1,"schemaVersion":"http://datacite.org/schema/kernel-4","source":"mds","isActive":true,"state":"findable","reason":null,"viewCount":0,"viewsOverTime":[],"downloadCount":0,"downloadsOverTime":[],"referenceCount":0,"citationCount":0,"citationsOverTime":[],"partCount":0,"partOfCount":0,"versionCount":0,"versionOfCount":0,"created":"2022-02-16T02:15:14.000Z","registered":"2022-02-16T02:15:15.000Z","published":"2022","updated":"2024-01-11T03:14:14.000Z"},"relationships":{"client":{"data":{"id":"arxiv.content","type":"clients"}},"provider":{"data":{"id":"arxiv","type":"providers"}},"media":{"data":{"id":"10.48550/arxiv.2202.07378","type":"media"}},"references":{"data":[]},"citations":{"data":[]},"parts":{"data":[]},"partOf":{"data":[]},"versions":{"data":[]},"versionOf":{"data":[]}}}}
real 1m10.871s
user 0m0.072s
sys 0m0.011s
They mention, like Crossref, a Public and Member API being split across different server pools. This does not indicate that performance is improve in one of the two though.
A filtered response with properties that seem relevant to front matters or our concept of expression:
{
"data": {
"id": "10.48550/arxiv.2202.07378",
"type": "dois",
"attributes": {
"doi": "10.48550/arxiv.2202.07378",
"creators": [
{
"name": "Hellmuth, Kathrin",
"nameType": "Personal",
"givenName": "Kathrin",
"familyName": "Hellmuth",
"affiliation": [],
"nameIdentifiers": []
},
{
"name": "Klingenberg, Christian",
"nameType": "Personal",
"givenName": "Christian",
"familyName": "Klingenberg",
"affiliation": [],
"nameIdentifiers": []
}
],
"titles": [
{
"title": "Computing Black Scholes with Uncertain Volatility-A Machine Learning Approach"
}
],
"publisher": "arXiv",
"publicationYear": 2022,
"dates": [
{
"date": "2022-02-15T13:07:08Z",
"dateType": "Submitted",
"dateInformation": "v1"
},
{
"date": "2024-01-11T01:38:15Z",
"dateType": "Updated",
"dateInformation": "v1"
},
{
"date": "2022-02",
"dateType": "Available",
"dateInformation": "v1"
},
{
"date": "2022",
"dateType": "Issued"
}
],
"types": {
"ris": "RPRT",
"bibtex": "article",
"citeproc": "article-journal",
"schemaOrg": "ScholarlyArticle",
"resourceType": "Article",
"resourceTypeGeneral": "Text"
},
"relatedIdentifiers": [
{
"relationType": "IsVersionOf",
"relatedIdentifier": "10.3390/math10030489",
"relatedIdentifierType": "DOI"
}
],
"descriptions": [
{
"description": "In financial mathematics, it is a typical approach to approximate financial markets operating in discrete time by continuous-time models such as the Black Scholes model. Fitting this model gives rise to difficulties due to the discrete nature of market data. We thus model the pricing process of financial derivatives by the Black Scholes equation, where the volatility is a function of a finite number of random variables. This reflects an influence of uncertain factors when determining volatility. The aim is to quantify the effect of this uncertainty when computing the price of derivatives. Our underlying method is the generalized Polynomial Chaos (gPC) method in order to numerically compute the uncertainty of the solution by the stochastic Galerkin approach and a finite difference method. We present an efficient numerical variation of this method, which is based on a machine learning technique, the so-called Bi-Fidelity approach. This is illustrated with numerical examples.",
"descriptionType": "Abstract"
}
],
"url": "https://arxiv.org/abs/2202.07378",
"created": "2022-02-16T02:15:14.000Z",
"registered": "2022-02-16T02:15:15.000Z",
"published": "2022",
"updated": "2024-01-11T03:14:14.000Z"
},
"relationships": {
}
}
}
creators
, titles
, and descriptions
seem relevant for front matter as authors, title and abstractdates
are available with varying level of granularity from year to month to day of the yearrelatedIdentifiers
shows here an example of linking between preprint expression and journal article expression (whose metadata can be found on Crossref)types
has various way of identifying what this object is according to different ontologies, none of which I am familiar withToday we reproduced the curl further up this ticket:
$ time curl https://api.datacite.org/dois/10.48550/arXiv.2202.07378
and it completed in:
real 0m1.024s
user 0m0.023s
sys 0m0.026s
so performance is not consistently slow.
https://blog.arxiv.org/2022/02/17/new-arxiv-articles-are-now-automatically-assigned-dois/ states:
and
and