The following object is masked from ‘package:cowplot’:
align_plots
Read 33 items
[1] 33 3405
|======================================================================| 100%
Finished in 31.61684 secs, 30 iterations.
Max iterations: 30.
Convergence loss: 4.218993e-06.
Best results with seed 1.
Warning:
This function will discard the raw data previously stored in the liger object and replace the raw.data slot with the imputed data.
Imputing given query datasets
Reference dataset:
SMSC_RNA
Query datasets:
SMSC_FISH
Registered S3 methods overwritten by 'ggplot2':
method from
[.quosures rlang
c.quosures rlang
print.quosures rlang
Read 33 items
[1] 33 3405
Running CCA
Merging objects
Finding neighborhoods
Finding anchors
Found 4408 anchors
Running PCA on query dataset
Warning in irlba(A = t(x = object), nv = npcs, ...) :
You're computing too large a percentage of total singular values, use a standard svd instead.
Finding integration vectors
Finding integration vector weights
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**|
Transfering 30527 features onto reference data
[1] "Gm9318" "LOC105246325" "Abi1" "Rnf213"
[5] "Cops2" "LOC105246475" "Gm6555" "Gm36857"
[9] "Pgpep1l" "Cpsf4" "Prdx6b" "Bco2"
[13] "D830035M03Rik" "Gm31145" "A930024E05Rik" "P2rx1"
[17] "Gm26851" "Epdr1" "Gm8995" "Spsb3"
['Acta2', 'Aldoc', 'Anln', 'Apln', 'Bmp4', 'Cnr1', 'Cpne5', 'Crh', 'Crhbp', 'Ctps', 'Flt1', 'Foxj1', 'Gad2', 'Gfap', 'Hexb', 'Itpr2', 'Kcnip2', 'Lamp5', 'Mfge8', 'Mrc1', 'Pdgfra', 'Plp1', 'Pthlh', 'Rorb', 'Serpinf1', 'Slc32a1', 'Sox10', 'Syt6', 'Tbr1', 'Tmem2', 'Ttr', 'Vip', 'Vtn']
Trying to set attribute .obs of view, copying.
Trying to set attribute .obs of view, copying.
INFO No batch_key inputted, assuming all cells are same batch
INFO No label_key inputted, assuming all cells have same label
INFO Using data from adata.X
INFO Computing library size prior per batch
INFO Successfully registered anndata object containing 3405 cells, 33 vars,
1 batches, 1 labels, and 0 proteins. Also registered 0 extra
categorical covariates and 0 extra continuous covariates.
INFO Please do not further modify adata until model is trained.
INFO No batch_key inputted, assuming all cells are same batch
INFO No label_key inputted, assuming all cells have same label
INFO Using data from adata.X
INFO Computing library size prior per batch
INFO Successfully registered anndata object containing 5613 cells, 53 vars,
1 batches, 1 labels, and 0 proteins. Also registered 0 extra
categorical covariates and 0 extra continuous covariates.
INFO Please do not further modify adata until model is trained.
INFO Training for 200 epochs.
Traceback (most recent call last):
File "Tutorial.py", line 119, in
Result = test.Imputing(Methods)
File "/swiftcache/x/SpatialBenchmarking/Benchmarking/SpatialGenes.py", line 290, in Imputing
result_GimVI = self.gimVI_impute()
File "/swiftcache/x/SpatialBenchmarking/Benchmarking/SpatialGenes.py", line 151, in gimVI_impute
model.train(200)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/model/gimvi.py", line 178, in train
self.trainer.train(n_epochs=n_epochs, *train_fun_kwargs)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/trainer.py", line 183, in train
self.compute_metrics()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
return func(args, **kwargs)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/trainer.py", line 150, in compute_metrics
result = getattr(scdl, metric)()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/jvae_trainer.py", line 25, in elbo
elbo = compute_elbo(self.model, self, mode=self.mode)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/_log_likelihood.py", line 24, in compute_elbo
for i_batch, tensors in enumerate(data_loader):
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 521, in next
data = self._next_data()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 563, in _next_data
data = _utils.pin_memory.pin_memory(data)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in pin_memory
return {k: pin_memory(sample) for k, sample in data.items()}
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in
return {k: pin_memory(sample) for k, sample in data.items()}
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 50, in pin_memory
return data.pin_memory()
RuntimeError: cannot pin 'torch.cuda.FloatTensor' only dense CPU tensors can be pinned
The tutorial.py stops during trining the model. I was trying with dataset15 from the example datasets.
CUDA_VISIBLE_DEVICES=7 python3 Tutorial.py
['Acta2', 'Aldoc', 'Anln', 'Apln', 'Bmp4', 'Cnr1', 'Cpne5', 'Crh', 'Crhbp', 'Ctps', 'Flt1', 'Foxj1', 'Gad2', 'Gfap', 'Hexb', 'Itpr2', 'Kcnip2', 'Lamp5', 'Mfge8', 'Mrc1', 'Pdgfra', 'Plp1', 'Pthlh', 'Rorb', 'Serpinf1', 'Slc32a1', 'Sox10', 'Syt6', 'Tbr1', 'Tmem2', 'Ttr', 'Vip', 'Vtn'] number of cells and genes in the matrix: (5613, 30527) Setting up for reconstruction ... done ( 21.3 seconds ) It. |Err
Loading required package: cowplot Registered S3 methods overwritten by 'ggplot2': method from [.quosures rlang c.quosures rlang print.quosures rlang Loading required package: Matrix Loading required package: patchwork
Attaching package: ‘patchwork’
The following object is masked from ‘package:cowplot’:
Read 33 items [1] 33 3405 |======================================================================| 100% Finished in 31.61684 secs, 30 iterations. Max iterations: 30. Convergence loss: 4.218993e-06. Best results with seed 1. Warning: This function will discard the raw data previously stored in the liger object and replace the raw.data slot with the imputed data.
Imputing given query datasets Reference dataset: SMSC_RNA Query datasets: SMSC_FISH Registered S3 methods overwritten by 'ggplot2': method from [.quosures rlang c.quosures rlang print.quosures rlang Read 33 items [1] 33 3405 Running CCA Merging objects Finding neighborhoods Finding anchors Found 4408 anchors Running PCA on query dataset Warning in irlba(A = t(x = object), nv = npcs, ...) : You're computing too large a percentage of total singular values, use a standard svd instead. Finding integration vectors Finding integration vector weights 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **| Transfering 30527 features onto reference data [1] "Gm9318" "LOC105246325" "Abi1" "Rnf213"
Result = test.Imputing(Methods)
File "/swiftcache/x/SpatialBenchmarking/Benchmarking/SpatialGenes.py", line 290, in Imputing
result_GimVI = self.gimVI_impute()
File "/swiftcache/x/SpatialBenchmarking/Benchmarking/SpatialGenes.py", line 151, in gimVI_impute
model.train(200)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/model/gimvi.py", line 178, in train
self.trainer.train(n_epochs=n_epochs, *train_fun_kwargs)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/trainer.py", line 183, in train
self.compute_metrics()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
return func(args, **kwargs)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/trainer.py", line 150, in compute_metrics
result = getattr(scdl, metric)()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/trainers/jvae_trainer.py", line 25, in elbo
elbo = compute_elbo(self.model, self, mode=self.mode)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/scvi/core/_log_likelihood.py", line 24, in compute_elbo
for i_batch, tensors in enumerate(data_loader):
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 521, in next
data = self._next_data()
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 563, in _next_data
data = _utils.pin_memory.pin_memory(data)
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in pin_memory
return {k: pin_memory(sample) for k, sample in data.items()}
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in
return {k: pin_memory(sample) for k, sample in data.items()}
File "/home/x/.conda/envs/Benchmarking/lib/python3.6/site-packages/torch/utils/data/_utils/pin_memory.py", line 50, in pin_memory
return data.pin_memory()
RuntimeError: cannot pin 'torch.cuda.FloatTensor' only dense CPU tensors can be pinned
[5] "Cops2" "LOC105246475" "Gm6555" "Gm36857"
[9] "Pgpep1l" "Cpsf4" "Prdx6b" "Bco2"
[13] "D830035M03Rik" "Gm31145" "A930024E05Rik" "P2rx1"
[17] "Gm26851" "Epdr1" "Gm8995" "Spsb3"
['Acta2', 'Aldoc', 'Anln', 'Apln', 'Bmp4', 'Cnr1', 'Cpne5', 'Crh', 'Crhbp', 'Ctps', 'Flt1', 'Foxj1', 'Gad2', 'Gfap', 'Hexb', 'Itpr2', 'Kcnip2', 'Lamp5', 'Mfge8', 'Mrc1', 'Pdgfra', 'Plp1', 'Pthlh', 'Rorb', 'Serpinf1', 'Slc32a1', 'Sox10', 'Syt6', 'Tbr1', 'Tmem2', 'Ttr', 'Vip', 'Vtn'] Trying to set attribute
.obs
of view, copying. Trying to set attribute.obs
of view, copying. INFO No batch_key inputted, assuming all cells are same batchINFO No label_key inputted, assuming all cells have same label
INFO Using data from adata.X
INFO Computing library size prior per batch
INFO Successfully registered anndata object containing 3405 cells, 33 vars, 1 batches, 1 labels, and 0 proteins. Also registered 0 extra
categorical covariates and 0 extra continuous covariates.
INFO Please do not further modify adata until model is trained.
INFO No batch_key inputted, assuming all cells are same batch
INFO No label_key inputted, assuming all cells have same label
INFO Using data from adata.X
INFO Computing library size prior per batch
INFO Successfully registered anndata object containing 5613 cells, 53 vars, 1 batches, 1 labels, and 0 proteins. Also registered 0 extra
categorical covariates and 0 extra continuous covariates.
INFO Please do not further modify adata until model is trained.
INFO Training for 200 epochs.
Traceback (most recent call last): File "Tutorial.py", line 119, in
Versions: