Closed darthjaja6 closed 1 year ago
May I ask the model and year of the mac studio device you are using?
You could try to add LLAMA_N_PREDICT=128
after LLAMA_LOG=1
to limit the length of the response.
Thanks for the quick response.
The machine is an 2022 model with m1 max. It can run llama.cpp 4q model in gguf formatpretty fast, haven't measured how many tokens per second but inference starts within 5s.
Tried as you suggested and now it shows this for ~5min
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-15 11:39:47.880] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-15 11:39:47.880] [info] [WASI-NN] GGML backend: set n_predict to 128
Then pops up the question prompt:
llama_print_timings: load time = 3342.54 ms
llama_print_timings: sample time = 12.80 ms / 116 runs ( 0.11 ms per token, 9063.21 tokens per second)
llama_print_timings: prompt eval time = 3177.20 ms / 13 tokens ( 244.40 ms per token, 4.09 tokens per second)
llama_print_timings: eval time = 231942.34 ms / 115 runs ( 2016.89 ms per token, 0.50 tokens per second)
llama_print_timings: total time = 235307.35 ms
Question:
I input my question and saw this log
Question:
Who is the president of the United States
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-15 11:44:42.533] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-15 11:44:42.533] [info] [WASI-NN] GGML backend: set n_predict to 128
And then stuck for another ~5min until getting this output:
[2023-10-15 11:47:39.819] [info] [WASI-NN] GGML backend: llama_get_kv_cache_token_count 128
llama_print_timings: load time = 302639.31 ms
llama_print_timings: sample time = 9.15 ms / 82 runs ( 0.11 ms per token, 8959.79 tokens per second)
llama_print_timings: prompt eval time = 7821.10 ms / 47 tokens ( 166.41 ms per token, 6.01 tokens per second)
llama_print_timings: eval time = 169449.23 ms / 81 runs ( 2091.97 ms per token, 0.48 tokens per second)
llama_print_timings: total time = 472104.35 ms
Answer:
▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
Question:
I'm pretty new to Rust and WASM. Just wonder
@darthjaja6 I verified the wasmedge-ggml-llama-interactive
example on my Macbook Pro (2021, Apple M1 Pro, 32GB Memory, macOS Ventura 13.2.1). I put all relevant things below. Hope they can help you.
│ ~/.wasmedge wasmedge --version ✔ │ 11:25:28
wasmedge version 0.13.4
│ ~/.wasmedge pwd ✔ │ 11:25:31
/Users/sam/.wasmedge
│ ~/.wasmedge tree . ✔ │ 11:25:35
.
├── bin
│ ├── wasmedge
│ └── wasmedgec
├── env
├── include
│ └── wasmedge
│ ├── enum.inc
│ ├── enum_configure.h
│ ├── enum_errcode.h
│ ├── enum_types.h
│ ├── int128.h
│ ├── version.h
│ └── wasmedge.h
├── lib
│ ├── libwasmedge.0.0.3.dylib
│ ├── libwasmedge.0.0.3.tbd
│ ├── libwasmedge.0.dylib -> libwasmedge.0.0.3.dylib
│ ├── libwasmedge.0.tbd -> libwasmedge.0.0.3.tbd
│ ├── libwasmedge.dylib -> libwasmedge.0.dylib
│ └── libwasmedge.tbd -> libwasmedge.0.tbd
└── plugin
├── ggml-metal.metal
└── libwasmedgePluginWasiNN.dylib
5 directories, 18 files
The command I used is LLAMA_LOG=1 wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-chat.Q5_K_M.gguf wasmedge-ggml-llama-interactive.wasm default
.
The statistics of one-turn conversation:
Question:
what's the capital of France?
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-16 11:21:39.282] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-16 11:21:40.191] [info] [WASI-NN] GGML backend: llama_get_kv_cache_token_count 55
llama_print_timings: load time = 246485.72 ms
llama_print_timings: sample time = 1.09 ms / 9 runs ( 0.12 ms per token, 8264.46 tokens per second)
llama_print_timings: prompt eval time = 557.88 ms / 47 tokens ( 11.87 ms per token, 84.25 tokens per second)
llama_print_timings: eval time = 348.64 ms / 8 runs ( 43.58 ms per token, 22.95 tokens per second)
llama_print_timings: total time = 246836.28 ms
Answer:
The capital of France is Paris.
LLAMA_LOG=1 wasmedge --dir .:. --nn-preload default:GGML:CPU:llama-2-7b-chat.Q5_K_M.gguf wasmedge-ggml-llama-interactive.wasm default
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q5_K_M.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 19: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 20: blk.10.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 21: blk.10.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 22: blk.10.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 23: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 24: blk.10.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 25: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 27: blk.10.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 28: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 29: blk.11.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 30: blk.11.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 31: blk.11.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 32: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 33: blk.11.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 34: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 35: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 36: blk.11.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 37: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 38: blk.12.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 39: blk.12.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 40: blk.12.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 41: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 42: blk.12.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 43: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 45: blk.12.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 46: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 47: blk.13.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 48: blk.13.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 49: blk.13.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 50: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 51: blk.13.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 52: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 53: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 54: blk.13.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 55: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 56: blk.14.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 57: blk.14.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 58: blk.14.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 59: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 60: blk.14.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 61: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 63: blk.14.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 64: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 65: blk.15.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 66: blk.15.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 67: blk.15.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 68: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 69: blk.15.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 70: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 71: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 72: blk.15.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 73: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 74: blk.16.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 75: blk.16.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 76: blk.16.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 77: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 78: blk.16.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 79: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 81: blk.16.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 82: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 83: blk.17.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 84: blk.17.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 85: blk.17.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 86: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 87: blk.17.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 88: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 89: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 90: blk.17.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 91: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 92: blk.18.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 93: blk.18.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 94: blk.18.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 95: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 96: blk.18.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 97: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 99: blk.18.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 100: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 101: blk.19.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 102: blk.19.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 103: blk.19.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 104: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 105: blk.19.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 106: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 107: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 108: blk.19.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 109: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 110: blk.2.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 111: blk.2.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 112: blk.2.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 113: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 114: blk.2.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 115: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 117: blk.2.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 118: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 119: blk.20.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 120: blk.20.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 121: blk.20.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 122: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 123: blk.20.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 124: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 125: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 126: blk.20.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 127: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 128: blk.21.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 129: blk.21.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 130: blk.21.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 131: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 132: blk.21.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 133: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 135: blk.21.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 136: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 137: blk.22.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 138: blk.22.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 139: blk.22.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 140: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 141: blk.22.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 142: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 143: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 144: blk.22.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 145: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 146: blk.23.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 147: blk.23.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 148: blk.23.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 149: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 150: blk.23.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 151: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 153: blk.23.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 154: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 155: blk.3.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 156: blk.3.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 157: blk.3.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 158: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 159: blk.3.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 160: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 161: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 162: blk.3.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 163: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 164: blk.4.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 165: blk.4.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 166: blk.4.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 167: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 168: blk.4.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 169: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 171: blk.4.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 172: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 173: blk.5.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 174: blk.5.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 175: blk.5.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 176: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 177: blk.5.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 178: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 179: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 180: blk.5.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 181: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 182: blk.6.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 183: blk.6.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 184: blk.6.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 185: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 186: blk.6.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 187: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 189: blk.6.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 190: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 191: blk.7.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 192: blk.7.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 193: blk.7.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 194: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 195: blk.7.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 196: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 198: blk.7.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 199: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 200: blk.8.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 201: blk.8.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 202: blk.8.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 203: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 204: blk.8.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 205: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 207: blk.8.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 208: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 209: blk.9.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 210: blk.9.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 211: blk.9.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 212: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 213: blk.9.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 214: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 216: blk.9.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 217: output.weight q6_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 226: blk.24.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 235: blk.25.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 244: blk.26.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 253: blk.27.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 262: blk.28.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 271: blk.29.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 280: blk.30.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 289: blk.31.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 290: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: general.file_type u32
llama_model_loader: - kv 11: tokenizer.ggml.model str
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
llama_model_loader: - kv 13: tokenizer.ggml.scores arr
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32
llama_model_loader: - kv 18: general.quantization_version u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q5_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_print_meta: format = GGUF V2 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q5_K - Medium
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 4.45 GiB (5.68 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.09 MB
llm_load_tensors: mem required = 4560.96 MB (+ 256.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-16 11:17:33.562] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-16 11:17:38.799] [info] [WASI-NN] GGML backend: llama_get_kv_cache_token_count 75
llama_print_timings: load time = 2725.90 ms
llama_print_timings: sample time = 7.33 ms / 63 runs ( 0.12 ms per token, 8590.13 tokens per second)
llama_print_timings: prompt eval time = 2517.63 ms / 13 tokens ( 193.66 ms per token, 5.16 tokens per second)
llama_print_timings: eval time = 2705.67 ms / 62 runs ( 43.64 ms per token, 22.91 tokens per second)
llama_print_timings: total time = 5444.28 ms
Question:
what's the capital of France?
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-16 11:21:39.282] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-16 11:21:40.191] [info] [WASI-NN] GGML backend: llama_get_kv_cache_token_count 55
llama_print_timings: load time = 246485.72 ms
llama_print_timings: sample time = 1.09 ms / 9 runs ( 0.12 ms per token, 8264.46 tokens per second)
llama_print_timings: prompt eval time = 557.88 ms / 47 tokens ( 11.87 ms per token, 84.25 tokens per second)
llama_print_timings: eval time = 348.64 ms / 8 runs ( 43.58 ms per token, 22.95 tokens per second)
llama_print_timings: total time = 246836.28 ms
Answer:
The capital of France is Paris.
Question:
what about Norway?
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 73.47 MB
llama_new_context_with_model: max tensor size = 102.54 MB
[2023-10-16 11:22:54.002] [info] [WASI-NN] GGML backend: llama_system_info: AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
[2023-10-16 11:22:55.023] [info] [WASI-NN] GGML backend: llama_get_kv_cache_token_count 75
llama_print_timings: load time = 321275.01 ms
llama_print_timings: sample time = 1.32 ms / 10 runs ( 0.13 ms per token, 7558.58 tokens per second)
llama_print_timings: prompt eval time = 627.47 ms / 66 tokens ( 9.51 ms per token, 105.18 tokens per second)
llama_print_timings: eval time = 391.16 ms / 9 runs ( 43.46 ms per token, 23.01 tokens per second)
llama_print_timings: total time = 321668.28 ms
Answer:
The capital of Norway is Oslo.
Hi @darthjaja6 We released 0.13.5 last week and updated the examples. Could you please try again?
On my M2 Max macbook, it has ~40 TPS. Ref: https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml-llama-interactive#performance
This issue is already fixed. If you still have the same problem, feel free to re-open it. Thanks.
Enviroment: macOS, mac studio 32gb Command:
Then I got the log:
It stuck here for ~ 20 minutes and showed me the log:
Where I inputed hte question "Who is the president of the United states?" Then I waited for another ~10min and got the output:
Seems to be just an invalid output and then prompted me for another input.
Can someone help?