File "finetune_xy.py", line 446, in <module>
main()
File "finetune_xy.py", line 303, in main
summary_writer=summary_writer)
File "finetune_xy.py", line 311, in evaluate_val
bce, probs, targets = validate(model, data_loader=data_val)
File "finetune_xy.py", line 366, in validate
fake_loss = log_loss(y[fake_idx], x[fake_idx], labels=[0, 1])
File "/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py", line 73, in inner_f
return f(**kwargs)
File "/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py", line 2206, in log_loss
transformed_labels = lb.transform(y_true)
File "/opt/conda/lib/python3.7/site-packages/sklearn/preprocessing/_label.py", line 491, in transform
sparse_output=self.sparse_output)
File "/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py", line 73, in inner_f
return f(**kwargs)
File "/opt/conda/lib/python3.7/site-packages/sklearn/preprocessing/_label.py", line 680, in label_binarize
"binarization" % y_type)
ValueError: continuous target data is not supported with label binarization
[1]+ Exit 1 nohup python -u finetune_xy.py --config configs/b7.json > log.out
could you explain a little bit the
data_x = []
data_y = []
for vid, score in probs.items():
score = np.array(score)
lbl = targets[vid]
score = np.mean(score)
lbl = np.mean(lbl)
data_x.append(score)
data_y.append(lbl)
y = np.array(data_y)
x = np.array(data_x)
fake_idx = y > 0.1
real_idx = y < 0.1
fake_loss = log_loss(y[fake_idx], x[fake_idx], labels=[0, 1])
real_loss = log_loss(y[real_idx], x[real_idx], labels=[0, 1])
print("{}fake_loss".format(prefix), fake_loss)
print("{}real_loss".format(prefix), real_loss)
I encountered this issue during validation
could you explain a little bit the
in your code? Thank you