sgl-project / sglang

SGLang is a fast serving framework for large language models and vision language models.
https://sgl-project.github.io/
Apache License 2.0
6.23k stars 538 forks source link

[Bug] Offline engine performance is not better than local server when running batch #1872

Open jischein opened 3 weeks ago

jischein commented 3 weeks ago

Checklist

Describe the bug

I'm running some benchmarks to test using the offline engine for batch processing Llama 405B ( sglang.Engine.generate() ) vs. spinning up a server and running the same batch of requests locally against that live SGLang server.

Reproduction

Local server batch benchmark:

def process_single_request(request: Dict[str, Any]) -> Dict[str, Any]: try: response = requests.post( "http://localhost:8001/v1/chat/completions", json=request['body'] ) response.raise_for_status() response_data = response.json()

    # Format result
    processed_result = {
        "id": f"cmpl-{response_data['id']}",
        "custom_id": request['custom_id'],
        "response": {
            "choices": [{
                "message": {
                    "role": "assistant",
                    "content": response_data["choices"][0]["message"]["content"]
                }
            }],
            "usage": {
                "prompt_tokens": response_data["usage"]["prompt_tokens"],
                "completion_tokens": response_data["usage"]["completion_tokens"],
                "total_tokens": response_data["usage"]["total_tokens"]
            }
        }
    }
    return processed_result
except Exception as e:
    print(f"Error processing request: {e}")
    return None

def process_with_progress(prepared_requests: List[Dict[str, Any]]): with Pool(processes=cpu_count()) as pool: results = list( tqdm( pool.imap(process_single_request, prepared_requests), total=len(prepared_requests), desc="Processing requests" ) ) return [r for r in results if r is not None] # Filter out any failed requests

def main():

Load requests

print("Loading requests...")
with open('mmlu_batch_requests.jsonl', 'r') as f:
    requests_data = [json.loads(line) for line in f if line.strip()]

# Process batch with timing
print(f"Starting batch processing of {len(requests_data)} requests...")
start_time = time.time()

# Process all requests using multiprocessing
results = process_with_progress(requests_data)

# Calculate totals
total_input_tokens = sum(r["response"]["usage"]["prompt_tokens"] for r in results)
total_completion_tokens = sum(r["response"]["usage"]["completion_tokens"] for r in results)

end_time = time.time()
total_time = end_time - start_time

# Calculate and print statistics
tokens_per_second = total_completion_tokens / total_time if total_time > 0 else 0

print(f"\nBatch Processing Statistics:")
print(f"Total time: {total_time:.2f} seconds")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total completion tokens: {total_completion_tokens}")
print(f"Tokens per second: {tokens_per_second:.2f}")
print(f"Number of requests processed: {len(results)}")
if torch.cuda.is_available():
    print(f"GPU type: {torch.cuda.get_device_name()}")

# Save results
print("\nSaving results...")
with open('mmlu_outputs.jsonl', 'w') as f:
    for result in results:
        f.write(json.dumps(result) + '\n')

if name == "main": main()

### Batch inference benchmark:
Run the following script

import json import time import sglang from typing import Dict, Any, List import torch

def prepare_prompts(requests_data: List[Dict[str, Any]], llm: sglang.Engine) -> tuple[List[str], List[Dict[str, Any]]]: prompts = [] sampling_params_list = []

for request in requests_data:
    messages = request['body']['messages']
    conversation = [{"role": msg["role"], "content": msg["content"]} for msg in messages]
    prompt = llm.get_tokenizer().apply_chat_template(
        conversation=conversation, tokenize=False, add_generation_prompt=True
    )
    prompts.append(str(prompt))

    sampling_params = {
        "max_new_tokens": request['body'].get('max_tokens', 2048),
        "temperature": request['body'].get('temperature', 0.7)
    }
    sampling_params_list.append(sampling_params)

return prompts, sampling_params_list

def main():

Initialize model

print("Initializing model...")
llm = sglang.Engine(
    model_path="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
    mem_fraction_static=0.8,
    tp_size=8
)

# Load requests
print("Loading requests...")
with open('mmlu_batch_requests.jsonl', 'r') as f:
    requests_data = [json.loads(line) for line in f if line.strip()]

# Prepare inputs
print("Preparing prompts...")
st = time.time()
prompts, sampling_params_list = prepare_prompts(requests_data, llm)
print(f"Time to prepare prompts: {time.time() - st:.2f} seconds")
print(prompts[10])
print(sampling_params_list[10])

# Time the generation
print("Starting generation...")
start_time = time.time()
outputs = llm.generate(prompts, sampling_params_list)
end_time = time.time()

# Calculate statistics
total_time = end_time - start_time
total_input_tokens = sum(output['meta_info']['prompt_tokens'] for output in outputs)
total_completion_tokens = sum(output['meta_info']['completion_tokens'] for output in outputs)
tokens_per_second = total_completion_tokens / total_time if total_time > 0 else 0

# Print statistics
print(f"\nBatch Processing Statistics:")
print(f"Total time: {total_time:.2f} seconds")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total completion tokens: {total_completion_tokens}")
print(f"Tokens per second: {tokens_per_second:.2f}")
print(f"Number of requests processed: {len(requests_data)}")
print(f"GPU type: {torch.cuda.get_device_name()}")

# Save results
print("\nSaving results...")
results = []
for output, request in zip(outputs, requests_data):
    result = {
        "id": f"cmpl-{output['meta_info']['id']}",
        "custom_id": request['custom_id'],
        "response": {
            "choices": [{
                "message": {
                    "role": "assistant",
                    "content": output['text']
                }
            }],
            "usage": {
                "prompt_tokens": output['meta_info']['prompt_tokens'],
                "completion_tokens": output['meta_info']['completion_tokens'],
                "total_tokens": output['meta_info']['completion_tokens'] + output['meta_info']['prompt_tokens']
            }
        }
    }
    results.append(result)

with open('mmlu_outputs.jsonl', 'w') as f:
    for result in results:
        f.write(json.dumps(result) + '\n')

if name == "main": main()


[Test data set](https://gist.github.com/jischein/15a9010fedb64bc701a5098254475773)

### Results
**Local server batch**

Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]

Batch Processing Statistics: Total time: 176.35 seconds Total input tokens: 89474 Total completion tokens: 49230 Tokens per second: 279.16 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB


**Offline mode batch**

Batch Processing Statistics: Total time: 177.41 seconds Total input tokens: 89974 Total completion tokens: 49971 Tokens per second: 281.67 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB


### Environment

PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35

Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB GPU 4: NVIDIA A100-SXM4-80GB GPU 5: NVIDIA A100-SXM4-80GB GPU 6: NVIDIA A100-SXM4-80GB GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True

CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 6 BogoMIPS: 4000.03 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 192 MiB (48 instances) L3 cache: 32 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47 NUMA node1 CPU(s): 48-95 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled

Versions of relevant libraries: [pip3] flashinfer==0.1.6+cu121torch2.4 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.6.77 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pyzmq==26.2.0 [pip3] torch==2.4.0 [pip3] torchao==0.6.1 [pip3] torchvision==0.19.0 [pip3] transformers==4.45.2 [pip3] triton==3.0.0 [pip3] zmq==0.0.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.3.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PH GPU type: NVIDIA A100-SXM4-80GB

Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py Loading requests... Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:23<00:00, 3.50it/s]

Batch Processing Statistics: Total time: 143.36 seconds Total input tokens: 89474 Total completion tokens: 48855 Tokens per second: 340.79 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB

Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py Loading requests... Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]

Batch Processing Statistics: Total time: 176.35 seconds Total input tokens: 89474 Total completion tokens: 49230 Tokens per second: 279.16 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB

Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ [2] 0:bash* "avior-a100-b-1" 16:36 01-Nov-24 B NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X

Legend:

X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 NIC4: mlx5_4 NIC5: mlx5_5 NIC6: mlx5_6 NIC7: mlx5_7 NIC8: mlx5_8 (reverse-i-search)`python3 ': CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ^Cthon3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001 (env) ubuntu@avior-a100-b-1:~/batch-worker$ tmux attach -t 2 [detached (from session 2)] (env) ubuntu@avior-a100-b-1:~/batch-worker$ python3 -m sglang.check_env Python: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] CUDA available: True GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB GPU 0,1,2,3,4,5,6,7 Compute Capability: 8.0 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 12.2, V12.2.140 CUDA Driver Version: 535.183.01 PyTorch: 2.4.0+cu121 sglang: 0.3.4.post1 flashinfer: 0.1.6+cu121torch2.4 triton: 3.0.0 transformers: 4.45.2 requests: 2.32.3 tqdm: 4.66.5 numpy: 1.26.4 aiohttp: 3.10.10 fastapi: 0.115.3 hf_transfer: 0.1.8 huggingface_hub: 0.26.1 interegular: 0.3.3 packaging: 24.1 PIL: 10.4.0 psutil: 6.1.0 pydantic: 2.9.2 uvicorn: 0.32.0 uvloop: 0.21.0 zmq: 26.2.0 vllm: 0.6.3.post1 multipart: 0.0.12 openai: 1.52.1 anthropic: 0.37.1 NVIDIA Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PHB NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X

Legend:

X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 NIC4: mlx5_4 NIC5: mlx5_5 NIC6: mlx5_6 NIC7: mlx5_7 NIC8: mlx5_8

Hypervisor vendor: KVM ulimit soft: 1048576

jischein commented 2 weeks ago

hey @ByronHsu — curious if any findings / updates here

merrymercy commented 1 week ago

@ByronHsu Are you able to reproduce this? On the other side, @ByronHsu finds the offline engine is faster than an online server in this benchmark script. https://github.com/sgl-project/sglang/pull/1968