Open jischein opened 3 weeks ago
hey @ByronHsu — curious if any findings / updates here
@ByronHsu Are you able to reproduce this? On the other side, @ByronHsu finds the offline engine is faster than an online server in this benchmark script. https://github.com/sgl-project/sglang/pull/1968
Checklist
Describe the bug
I'm running some benchmarks to test using the offline engine for batch processing Llama 405B (
sglang.Engine.generate()
) vs. spinning up a server and running the same batch of requests locally against that live SGLang server.Reproduction
Local server batch benchmark:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001
def process_single_request(request: Dict[str, Any]) -> Dict[str, Any]: try: response = requests.post( "http://localhost:8001/v1/chat/completions", json=request['body'] ) response.raise_for_status() response_data = response.json()
def process_with_progress(prepared_requests: List[Dict[str, Any]]): with Pool(processes=cpu_count()) as pool: results = list( tqdm( pool.imap(process_single_request, prepared_requests), total=len(prepared_requests), desc="Processing requests" ) ) return [r for r in results if r is not None] # Filter out any failed requests
def main():
Load requests
if name == "main": main()
import json import time import sglang from typing import Dict, Any, List import torch
def prepare_prompts(requests_data: List[Dict[str, Any]], llm: sglang.Engine) -> tuple[List[str], List[Dict[str, Any]]]: prompts = [] sampling_params_list = []
def main():
Initialize model
if name == "main": main()
Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]
Batch Processing Statistics: Total time: 176.35 seconds Total input tokens: 89474 Total completion tokens: 49230 Tokens per second: 279.16 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB
Batch Processing Statistics: Total time: 177.41 seconds Total input tokens: 89974 Total completion tokens: 49971 Tokens per second: 281.67 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB
PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB GPU 4: NVIDIA A100-SXM4-80GB GPU 5: NVIDIA A100-SXM4-80GB GPU 6: NVIDIA A100-SXM4-80GB GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 6 BogoMIPS: 4000.03 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 192 MiB (48 instances) L3 cache: 32 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47 NUMA node1 CPU(s): 48-95 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries: [pip3] flashinfer==0.1.6+cu121torch2.4 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.6.77 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pyzmq==26.2.0 [pip3] torch==2.4.0 [pip3] torchao==0.6.1 [pip3] torchvision==0.19.0 [pip3] transformers==4.45.2 [pip3] triton==3.0.0 [pip3] zmq==0.0.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.3.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PH GPU type: NVIDIA A100-SXM4-80GB
Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py Loading requests... Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:23<00:00, 3.50it/s]
Batch Processing Statistics: Total time: 143.36 seconds Total input tokens: 89474 Total completion tokens: 48855 Tokens per second: 340.79 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB
Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py Loading requests... Starting batch processing of 500 requests... Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]
Batch Processing Statistics: Total time: 176.35 seconds Total input tokens: 89474 Total completion tokens: 49230 Tokens per second: 279.16 Number of requests processed: 500 GPU type: NVIDIA A100-SXM4-80GB
Saving results... ubuntu@avior-a100-b-1:~/batch-worker$ [2] 0:bash* "avior-a100-b-1" 16:36 01-Nov-24 B NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X
Legend:
X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 NIC4: mlx5_4 NIC5: mlx5_5 NIC6: mlx5_6 NIC7: mlx5_7 NIC8: mlx5_8 (reverse-i-search)`python3 ': CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ^Cthon3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001 (env) ubuntu@avior-a100-b-1:~/batch-worker$ tmux attach -t 2 [detached (from session 2)] (env) ubuntu@avior-a100-b-1:~/batch-worker$ python3 -m sglang.check_env Python: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] CUDA available: True GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB GPU 0,1,2,3,4,5,6,7 Compute Capability: 8.0 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 12.2, V12.2.140 CUDA Driver Version: 535.183.01 PyTorch: 2.4.0+cu121 sglang: 0.3.4.post1 flashinfer: 0.1.6+cu121torch2.4 triton: 3.0.0 transformers: 4.45.2 requests: 2.32.3 tqdm: 4.66.5 numpy: 1.26.4 aiohttp: 3.10.10 fastapi: 0.115.3 hf_transfer: 0.1.8 huggingface_hub: 0.26.1 interegular: 0.3.3 packaging: 24.1 PIL: 10.4.0 psutil: 6.1.0 pydantic: 2.9.2 uvicorn: 0.32.0 uvloop: 0.21.0 zmq: 26.2.0 vllm: 0.6.3.post1 multipart: 0.0.12 openai: 1.52.1 anthropic: 0.37.1 NVIDIA Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PHB NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X
Legend:
X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 NIC4: mlx5_4 NIC5: mlx5_5 NIC6: mlx5_6 NIC7: mlx5_7 NIC8: mlx5_8
Hypervisor vendor: KVM ulimit soft: 1048576