[X] 1. I have searched related issues but cannot get the expected help.
[X] 2. The bug has not been fixed in the latest version.
[X] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
2024-12-01 09:14:57.446738: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-12-01 09:14:57.460649: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-12-01 09:14:57.477200: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-12-01 09:14:57.482288: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-12-01 09:14:57.495378: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI, in other operations, rebuild TensorFlow with the appropriate compiler flags.
/usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.4
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
Python: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: NVIDIA H100 80GB HBM3
GPU 0,1,2,3,4,5,6,7 Compute Capability: 9.0
CUDA_HOME: /usr
NVCC: Cuda compilation tools, release 12.4, V12.4.131
CUDA Driver Version: 550.127.05
PyTorch: 2.5.1+cu124
sglang: 0.3.6.post2
flashinfer: 0.1.6+cu124torch2.4
triton: 3.1.0
transformers: 4.46.3
torchao: 0.6.1
numpy: 1.26.4
aiohttp: 3.11.8
fastapi: 0.115.5
hf_transfer: 0.1.8
huggingface_hub: 0.26.3
interegular: 0.3.3
modelscope: 1.20.1
orjson: 3.10.12
packaging: 21.3
psutil: 5.9.0
pydantic: 2.10.2
multipart: 0.0.19
zmq: 26.2.0
uvicorn: 0.32.1
uvloop: 0.21.0
vllm: 0.6.4.post1
openai: 1.46.0
anthropic: 0.39.0
decord: 0.6.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS 104-207 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS 104-207 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS 104-207 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS 104-207 1 N/A
NIC0 SYS SYS SYS SYS SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
Hypervisor vendor: KVM
ulimit soft: 1048576
Checklist
Describe the bug
Reproduction
python -m sglang.launch_server --model-path google/gemma-2-27b-it --tp 8
Environment