Open shaivimalik opened 3 months ago
The hyperparameter values for SVC were obtained by performing GridSearchCV on the training set.
The code snippets given below can be used to validate the findings:
For Training SVM - with Data Leakage:
from sklearn.model_selection import GridSearchCV # Define parameters for grid search gamma_range = np.logspace(start=-4, stop=3, num=8, base=2) C_range = np.logspace(start=-4, stop=3, num=8, base=10) parameters = {'C': C_range, 'gamma': gamma_range} # Initialize SVM model svc = SVC(kernel='rbf', random_state=15) # Define GridSearchCV with custom scorers clf = GridSearchCV(svc, parameters, cv=10, scoring='accuracy') # Perform grid search clf.fit(X_train, y_train) # Print results print("Accuracy:", clf.best_score_) print("Best hyperparameters:", clf.best_params_)
For Training SVM - without Data Leakage:
from sklearn.model_selection import GridSearchCV # Define parameters for grid search gamma_range = np.logspace(start=-4, stop=3, num=8, base=2) C_range = np.logspace(start=-4, stop=3, num=8, base=10) parameters = {'C': C_range, 'gamma': gamma_range} # Initialize SVM model svc = SVC(kernel='rbf', random_state=15) # Define GridSearchCV with custom scorers clf = GridSearchCV(svc, parameters, cv=10, scoring='accuracy') # Perform grid search clf.fit(X_train_oversamp,y_train_oversamp) # Print results print("Accuracy:", clf.best_score_) print("Best hyperparameters:", clf.best_params_)
In the approach presented above for Training SVM - without Data Leakage , there is data leakage from training set to validation set within GridSearchCV.
The hyperparameter values for SVC were obtained by performing GridSearchCV on the training set.
The code snippets given below can be used to validate the findings:
For Training SVM - with Data Leakage:
For Training SVM - without Data Leakage: